Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-48161

Tatalias, M; Bockisch, C J; Bertolini, G; Straumann, D; Palla, A (2011). Antihysteresis of perceived longitudinal body axis during continuous quasi-static whole-body rotation in the earth-vertical roll plane. Experimental Brain Research, 209(3):443-454.

[img]
Preview
Accepted Version
PDF
1MB

Abstract

Estimation of subjective whole-body tilt in stationary roll positions after rapid rotations shows hysteresis. We asked whether this phenomenon is also present during continuous quasi-static whole-body rotation and whether gravitational cues are a major contributing factor. Using a motorized turntable, 8 healthy subjects were rotated continuously about the earth-horizontal naso-occipital axis (earth-vertical roll plane) and the earth-vertical naso-occipital axis (earth-horizontal roll plane). In both planes, three full constant velocity rotations (2°/s) were completed in clockwise and counterclockwise directions (acceleration = 0.05°/s(2), velocity plateau reached after 40 s). Subjects adjusted a visual line along the perceived longitudinal body axis (pLBA) every 2 s. pLBA deviation from the longitudinal body axis was plotted as a function of whole-body roll position, and a sine function was fitted. At identical whole-body earth-vertical roll plane positions, pLBA differed depending on whether the position was reached by a rotation from upright or by passing through upside down. After the first 360° rotation, pLBA at upright whole-body position deviated significantly in the direction of rotation relative to pLBA prior to rotation initiation. This deviation remained unchanged after subsequent full rotations. In contrast, earth-horizontal roll plane rotations resulted in similar pLBA before and after each rotation cycle. We conclude that the deviation of pLBA in the direction of rotation during quasi-static earth-vertical roll plane rotations reflects static antihysteresis and might be a consequence of the known static hysteresis of ocular counterroll: a visual line that is perceived that earth-vertical is expected to be antihysteretic, if ocular torsion is hysteretic.

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Ophthalmology Clinic
04 Faculty of Medicine > University Hospital Zurich > Clinic for Neurology
04 Faculty of Medicine > University Hospital Zurich > Clinic for Otorhinolaryngology
04 Faculty of Medicine > Neuroscience Center Zurich
04 Faculty of Medicine > Center for Integrative Human Physiology
DDC:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2011
Deposited On:26 May 2011 14:49
Last Modified:27 Nov 2013 21:14
Publisher:Springer
ISSN:0014-4819
Additional Information:The original publication is available at www.springerlink.com
Publisher DOI:10.1007/s00221-011-2572-8
PubMed ID:21305378
Citations:Web of Science®
Google Scholar™

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page