Thermal spread of vessel-sealing devices evaluated in a clinically relevant in vitro model

Eberli, D; Hefermehl, L J; Müller, A; Sulser, T; Knönagel, H

Postprint available at:
http://www.zora.uzh.ch

Posted at the Zurich Open Repository and Archive, University of Zurich.
http://www.zora.uzh.ch

Originally published at:
Thermal spread of vessel-sealing devices evaluated in a clinically relevant in vitro model

Abstract

Introduction: Bipolar vessel-sealing devices (VSDs) have advantages in urological surgeries (less hemorrhage, shorter operating time). However, these instruments can cause thermal injuries, which can result in neural damage and necrosis. The objectives of this study were to establish a reproducible in vitro model for standardized assessment of electrosurgical devices and to evaluate whether optimized placement of surgical instruments can reduce the thermal spread. Methods: We evaluated thermal spread of two VSDs in vitro using thin bovine muscle strips. Thermal injury was measured using an infrared camera, temperature probes and histology. The recordings were made with the VSD alone and with a rectangular clamp next to the VSD. Results: Both instruments showed a significant temperature spread of 2.5 mm lateral to the VSD. The placement of a metal clamp next to the VSD significantly reduced the temperature spread. Histological examinations were able to underline these findings. Conclusions: In this study we describe a straightforward clinically relevant in vitro model for the evaluation of future electrosurgical instruments. We demonstrated that the thermal spread of VSD could be further reduced by optimized placement of an additional surgical instrument. Our results could help surgeons protect sensitive structures like nerves in the vicinity of the VSD.
Thermal Spread of Vessel Sealing Devices
evaluated in a clinically relevant in-vitro Model

Original Article

Short title: Thermal spread of vessel sealing devices

Authors:

Daniel Eberli \(^1,2\) *, Lukas J. Hefermehl \(^2\) *,

Alexander Müller \(^2\), Tullio Sulser \(^2\), Hartmut Knönagel \(^1\)

* Both Authors have equally contributed to this study

1) Limmattal Hospital
Department of Urology
Urdorferstrasse 100
8952 Schlieren, Switzerland

2) Department of Urology
University Hospital Zurich
Frauenklinikstrasse 10
8091 Zurich, Switzerland

Corresponding Author:
Daniel Eberli, MD, PhD
Department of Urology
University Hospital Zurich
Frauenklinikstrasse 10
8091 Zurich
Switzerland
daniel.eberli@usz.ch
Tel: + 41 44 255 95 49
Fax: + 41 44 255 96 20

Key Words

vessel sealing device, thermal injury, temperature spread, nerve sparing; cautery
Abstract

Introduction: Bipolar vessel-sealing devices (VSD) have advantages in urological surgeries (less haemorrhage, shorter operating time). However, these instruments can cause thermal injuries, which can result in neural damage and necrosis. The objectives of this study were to establish a reproducible in-vitro model for standardised assessment of electrosurgical devices and to evaluate whether optimized placement of surgical instruments can reduce the thermal spread.

Methods: We evaluated thermal spread of two VSD in vitro using thin bovine muscle strips. Thermal injury was measured using an infrared camera, temperature probes and histology. The recordings were made with the VSD alone and with a rectangular clamp next to the VSD.

Results:
Both instruments showed a significant temperature spread of 2.5 mm lateral to the VSD. The placement of a metal clamp next to the VSD significantly reduced the temperature spread. Histological examinations were able to underline these findings.

Conclusions:
In this study we describe a straightforward clinically relevant in vitro model for the evaluation of future electrosurgical instruments. We demonstrated that the thermal spread of VSD could be further reduced by optimized placement of an additional surgical instrument. Our results could help surgeons protect sensitive structures like nerves in the vicinity of the VSD.

Introduction

Heat-mediated hemostasis has a long tradition in medicine. As early as 3000 B.C., boiled oil and tools heated in a fire were applied on bleeding injuries [1-2]. In the early 19th century, the French physicist Becquerel became the first to use electrocautery when he applied direct electric current to bleeding tissue, causing hemostasis [3]. In the late 19th century,
D’Arsonval, a French biophysicist, found that the use of high frequency alternating electric current during electrocautery could prevent painful electrical shocks [3-4]. In 1926 Dr. Harvey Cushing and Dr. William T. Bovie introduced the first electrocautery instruments with the ability to both cut and coagulate [5-6]. After that discovery, diathermy devices became widely used, particularly in minimally invasive procedures [3,7].

Adequate blood coagulation during surgery is critical to a successful outcome. Good visibility in the surgical field is key for proper dissection and minimal blood loss is essential to reduce perioperative morbidity. Conventional ligation is time consuming and technically demanding, especially in the minimally invasive setting. Clips and staplers are not cost effective, have limited security, and can only be used for small tissue strips. Therefore, bipolar electrocoagulation and vessel sealing devices offer some advantages, including ease of handling and fast hemostasis that does not require the use of foreign bodies that must remain in the surgical site. However, lateral temperature spread is a major concern with the use of these devices. Tissue coagulation occurs when the temperature rises above 45 °C [8-11]. If the temperature rises higher than this, cells begin to die and denaturation of proteins occurs at temperatures from 57 °C to 65 °C [9].

Therefore, the extent of lateral thermal spread should be minimized, especially in operations where nerve sparing is a crucial part of the procedure [12-13]. Some studies have shown that the use of bipolar cautery devices in nerve sparing radical prostatectomy (nsRPE) is followed by a higher rate of erectile dysfunction [8,14-15]. Further, bowel injuries can occur and can be unrecognized for many days [16-17]. However, lower blood transfusion rates for nsRPE were reported when modern vessel sealing devices were used [18].

In the last ten years there has been an enormous effort to develop novel electrosurgical devices. The newest generation, the vessel sealing devices (VSD), use more sophisticated
electric generators that employ active feedback to optimise power output and high compressive pressure during the sealing process. By sensing tissue impedance between two bipolar electrodes the start or stop of the bipolar radio frequency energy that needs to be delivered is calculated by the instrument and the energy controlled with the goal to reduce thermal lateral tissue damage. Shorter operations and decreased blood loss compared to conventional ligation are the major advantages of using VSD [19]. However, worries about collateral damage by thermal injury especially for critical structures such as nerves still remain.

Many of the numerous electrosurgical devices on the market still await detailed investigation to determine the extent of the thermal spread resulting from their use and their potential for tissue damage. These investigations are crucial, as the data they will generate will allow the surgeon to choose the right electrosurgical instrument for the particular surgery to be performed. In this study we described an in-vitro model to evaluate the thermal spread and sought for strategies to further lower the thermal damage in the surrounding tissue. Using this novel model we were able to precisely describe the extent of thermal damage resulting from two different VSDs and demonstrate how the optimal placement of a second surgical instrument can protect the tissue in vicinity.

**Materials and Methods**

**In vitro Model**

In order to precisely evaluate thermal spread, we developed a standardized in vitro model. Thin strips of fresh bovine muscle fascia with a mean diameter of 4 mm and a length of 6 cm
were dissected longitudinally. Samples were kept at 8 °C until use. The strips were hung between two parallel wires that were 6 cm apart. The strips were held in place by a vessel clamp on each side. To assure consistent traction, each clamp was pulled by a 25-gram weight that was connected to the clamp with a fine thread (Figure 1a). Prior to establishing our in vitro model, we analyzed infrared images taken during open radical prostatectomies. The temperature in the pelvis during surgery was 30±1.5 °C; therefore, we used 30 °C as the starting temperature for the muscle/fascia strips. During measurement, the strip constructs were positioned on top of a warm water bath.

In these experiments, two different vessel-sealing devices (VSDs) were used. The first device represents the latest generation of vessel-sealing devices (LigaSure Impact™ Instrument 36 mm with the Force Triad energy platform (Valleylab, USA) and a novel proprietary sensing technology). The second device used was the LigaSure™ Axs-Instrument with the LigaSure-HF energy platform (Valleylab, USA). The main difference between the two devices is that the energy application during the sealing process is continuously being changed in the Impact™ device, whereas the older Axs™ instrument applies a steady energy during the whole process.

Further, we investigated the hypothesis that a metal instrument placed close-by could serve as a heat sink and potentially reduce the tissue damage. We therefore placed a dissecting clamp in open and closed position next to the VSD and recorded the effect on the thermal spread. In the open position one branch of the clamp was placed on each side of the VSD (Figure 1). Between experiments, the clamp was allowed to cool down to room temperature.

**Deep Tissue Temperature Measurement**

For continuous measurement of the temperature within the tissue, we used a sensor (0.4 mm diameter) with a resolution of 0.1° Celsius (Data-Logger Thermometer 306, Volcraft,
Germany). Every second, the temperature was recorded by a personal computer (ThermoLog® software, Voltcraft Germany) and this data was later exported to a Microsoft Excel file. The sensors were placed at 1, 2 and 3 mm lateral to the vessel-sealing device. Each series of temperature measurements began with the initiation of the tissue sealing procedure and ended when the lateral tissue temperature reached 30°C Celsius. In addition, we evaluated the maximum temperature in between the branches of each clamp, the lateral temperature velocity (time to peak temperature in seconds per distance in millimeters), the duration of temperatures over 45 °C and the influence of repetitive application at the same location.

**Tissue Surface Temperature Measurement**

To assess the lateral temperature spread an infrared camera (Infrared Camera IC 080, Trotec, Germany) with a resolution of 0.1 °C (spatial resolution of 166 µm/Pix) was mounted 20 cm above the tissue sample. The still image containing the temperature information was taken after successful termination of the sealing procedure as indicated by the sound signal from the instrument. Preliminary results did not indicate any further rise in temperature after the sealing device stopped delivering energy. Every experiment was repeated six times and analyzed using the program provided with the camera (SATreport®, Trotec, Germany). On both sides of the sealing instrument, an orthogonal line (region of interest) was drawn at the site of maximal temperature spread. The individual data points were transferred into Excel. The average temperature was calculated for every experiment and a temperature curve was drawn.

**Histomorphological Analysis**

After the sealing process, tissue samples were collected and placed in 10% formalin solution (Accustain Formalin Solution 10%, neutral buffered, Sigma-Aldrich). The samples that had been heated with both branches of the surgical clip on one side of the VSD were also marked with sutures on the clip side. After 12 hours, the samples were rinsed three times with PBS
(PBS pH 7.2, 1x, Gibco, Invitrogen) and processed for histology. Sections were cut (5 µm) and stained with haematoxylin & eosin (H&E). Using these slides, areas of damaged or necrotic tissue were morphometrically assessed and compared using light microscopy (Leica DM 4000 B, Leica-Software). The shrinkage of tissue during processing was compensated by calculation of a coefficient. This factor was calculated by the measurement of imprints of clamp width before the fixation in formalin and after histological processing.

We measured the distance from the edge of the vessel-sealing device imprints, which were easily detectable as indentations in the tissue, to the area where the muscle tissue appeared normal in terms of cell volume, striatation and intact nuclei. Heat-damaged tissue contained denatured cells with loss of striatation, large vacuoles, disrupted muscle fibres and shrunken nuclei.

**Statistical Analysis**

All presented data are expressed as the mean ± standard error of the mean. All statistical analysis was performed using SPSS v16 (SPSS Inc., Chicago, IL). When comparing data between the two sealing devices, independent t-tests were used. Analysis of the differences between the three different groups (no clip, one branch on each side and closed clamp on one side) were analyzed using one-way analysis of variance. The groups were further analyzed using Bonferroni post hoc testing if the F-statistics were significant. An alpha of p>0.05 was considered significant.

**Results**

**Deep Tissue Temperature Measurement**

The maximal temperature in between the branches of the AXS-Instrument was 77.2 °C (±6.3). At 1 mm lateral to the device, the deep tissue temperature measurement showed an average temperature of 47.5 °C (±7.5). This temperature is still able to irreversibly damage nerve cells.
However, the temperature sensor placed 2 mm laterally revealed a mean maximal temperature of 41.2 °C (±4.2). When the newer Impact instrument was used, a temperature of 87.3 °C (±5.4) was measured in between the branches, indicating that this instrument produces a higher maximal temperature than the AXS-Instrument (p=0.215). In addition, at 1mm lateral to the Impact device, the average temperature was measured to be 57.9 °C (±5.1), indicating that the thermal spread resulting from the use of the Impact sealing device was significantly higher (p= 0.020). However, the deep tissue temperature measurements revealed that despite the increased heating at the site of the Impact device, the tissue temperature at 2 mm from the device dropped to the same level as that seen with the AXS device (41.9 °C; ±4.1; p= 0.759). Measurements taken at 3 mm lateral to the devices indicated that the temperature dropped to 36.9 °C (±1.1) for the AXS-Instrument and 37.6 °C (±1.6) for the Impact-Instrument (p= 0.508). The mean velocity of the temperature peak was 0.25 mm/sec (±0.08) for both instruments.

Because the critical temperature for neural damage is 45°C, we also determined how long the temperature remained at or above this value at various distances from the sealing devices. At a distance of 1 mm the temperature remained over 45 °C for an average 8.3 seconds (Range 0-24 sec) with the AXS-Instrument and 26.6 seconds (Range 18-40 sec) for the Impact-Instrument. If the sealing instrument was applied twice at the same location on the tissue strip, the temperature at 2 mm away from the instrument remained above the critical temperature of 45 °C in 50% of the cases (average for the AXS: 43.0 °C ±7.5; average for the Impact: 44.5 °C ±7.2). As expected, if the application was repeated three or four times, the mean temperature also rose above the significant temperature of 45°C (three repetitions: AXS: 47.2 °C ±6.3; Impact: 47.0 °C ±7.5 and four repetitions: AXS: 49.8 °C ±5.9; Impact: 50.3 °C ±6.1).

There was no significant difference between the two instruments in this experiment (p=0.23).
**Surface Temperature Distribution**

To clearly define the spatial temperature distribution resulting from application of the VSDs, we used an infrared camera to image muscle strips during and after sealing. When the AXS-Instrument was applied (Figure 2) to the muscle fascia strip, infrared imaging revealed that the temperature dropped below the 45 °C mark at about 1.7 mm away from the sealed site (44.3 °C; ±7.5). In contrast, when the Impact device was used, the average spread of temperatures above 45 °C reached 2.7 mm (44.5 °C; ±8.7, Figure 3).

We hypothesized that metal surgical clamps could be used as a heat sink if placed next to a cautery device, and that this would help to protect the adjacent tissue from thermal injury during sealing with a VSD. In order to test this hypothesis, we repeated the imaging experiments using surgical clamps placed in various positions around each VSD during sealing. First, an opened right angular clamp was placed with each of its branches on either side of the AXS sealing device. In this setting, the significant temperature spread was less than 0.9 mm (43.7 °C; ±7.8) laterally. Due to the small mass of the clamp branches on each side, the temperature spread was reduced but temperature rises above 45 °C could not be prevented completely. However, if a closed right angular clamp was placed on one side of the vessel-sealing device, infrared imaging indicated that the tissue temperature did not rise above 45 °C at any point. The differences between these groups were statistically significant (p = 0.002). The reduction of the thermal spread due to a closed clamp was observed only on the side of its placement and did not affect the contralateral side.

Repetition of these experiments using the Impact instrument (figure 3) revealed the following results. The tissue temperature dropped below 45°C at about 1.2 mm (44.8 °C; ±8.5) lateral of the clamp if the clamp was placed with one branch on each side of the sealing device. In contrast, when the rectangular clamp was positioned on one side of the device, the lateral
thermal spread was reduced to 0.3 mm (44.7 °C; ±7.7). The differences between these groups were statistically significant (p= 0.001).

**Histomorphological Analysis**

No carbonization of the tissue was visible in any of the muscle fascia tissue samples when they were examined macroscopically as well as microscopically (Figure 4). After heating with the AXS device, coagulation of the tissue could be seen up to 0.9 mm (±0.10) away from the device (Figure 4B). When the branches of a surgical clamp were placed on each side of the AXS, normal tissue could be seen beginning at 0.7 mm (±0.07) away from the device, whereas this distance could be further reduced to 0.6 mm (±0.07) when the whole clamp was put on one side of the AXS. Although these results show a trend they did not reach statistical significance (p=0.120). When the Impact was used, coagulation of the tissue was visible up to a distance of 1 mm (±0.09) (Figure 4c). An opened clamp placed on both sides of the Impact reduced this distance to 0.8 mm (±0.10), and a closed clamp placed on one side of the instrument reduced the distance to 0.7 mm (±0.18) (p=0.285). The statistical analysis showed no significant difference between the two instruments in the same setting (p=0.666 to = 0.715).

**Discussion**

Electrosurgical devices are routinely used in many urologic procedures for open and laparoscopic surgeries. The energy delivered by these instruments raises the temperature in the tissue and induces electrocautery, or tissue sealing. However, it also causes an unintended temperature rise in proximity to the instruments, which causes collateral tissue damage. Nowadays, the surgeon can choose between many different electrosurgical instruments and many more will be induced into the market over the next years. Therefore, a reliable in vitro
model is of great value to rapidly estimate the extent of the lateral temperature spread and the thermal damage to tissue, without the risks and administrative work of human or animal trials.

The focus of the experiments presented in this paper was not to evaluate the efficacy of hemostasis but to present a precise in vitro model of the thermal behaviour in small tissue strips and to evaluate whether the smart placement of additional surgical instruments can protect tissue next to the bipolar device. Our results can help to make a risk assessment for various operations and enable the surgeon to decide when to use an electrosurgical or vessel sealing device. In an effort to address the issue of heat spread in a clinical situation, we recorded an open radical prostatectomy procedure using an infrared camera. This preliminary experiment pinpointed limitations of the clinical approach. The angle of view and distance needed to be adjusted for every picture taken and the region of interest was often covered by instruments or the surgeon’s hands. Thus, continuous temperature measurement using probes during operations would not only prolong surgery but also bears an additional risk of contamination. Further, in an actual surgery the inconsistent volume of tissue to be coagulated would introduce an unwanted high variability of the temperature readings. Nevertheless, the infrared images taken during radical prostatectomy were consistent with our in vitro model.

Further support for our in vitro model is found in a recent publication by Wallwiener et al. [20]. In that study, the data acquired using an in vivo modified fallopian tube model supports our data on VSDs. Interestingly, the cooling effect of intravascular blood flow, which is discussed in studies of burn wounds, does not seem to play a significant role in the application of electrosurgical devices. This might be due to the fact that bipolar devices compress the tissue, minimizing blood flow. This also supports the use of the proposed in vitro model.

Using two independent methods of temperature measurement, we were able to define the precise lateral temperature spread of two vessel sealing devices. The temperature dropped under the critical value for nerve damage (45 °C) at a distance of 1.7 mm using the AXS-
Instrument and 2.7 mm if the Impact-Instrument was used. While this distance might be sufficient in some surgical procedures, such as freeing the kidney by dissecting the gerota’s fascia, clearly a steeper drop in temperature is desired for delicate procedures occurring close to neural structures (e.g., a neurovascular bundle). Therefore, we sought methods to further reduce the thermal spread. The simplest way to lower the temperature would be to add cold water. However, this would impair visibility and prolong the surgical procedure as fresh water was constantly added and removed. Interestingly, the dissecting clamp commonly used to dissect the periprostatic plane can be used as a heat sink during the sealing process. We were able to demonstrate that the placement of the dissecting clamp next to the VSD lowered the temperature spread significantly, with the largest decrease occurring when the closed clamp was placed on one side of the VSD. This measure of caution is now routinely used in our clinic if VSDs are used close to neural structures.

Histomorphometric analysis confirmed these results. Less heat damage was visible microscopically if the clamp was used as a heat sink. As expected, higher temperatures were needed to induce structural changes that can be identified in stained tissue strips. Our data showed that increased damage occurs closer to the VSD where the tissue temperature is the greatest. Thus, this model can be used to assess different methods of VSD application. We were able to show that the common mistake of repetitive VSD application at the same location leads to a significantly greater temperature spread and more collateral tissue damage.

The main aim of this study was to elaborate and evaluate a novel in vitro model for the measurement of lateral thermal spread. Therefore we tested the instruments used during radical prostatectomies in our clinic. This tool will allow us to further study the lateral thermal spread of other coagulation devices such as monopolar, bipolar, and ultrasonic vessel sealing instruments for laparoscopic and robotic surgery.
In conclusion, we were able to develop a straightforward in vitro model which allows rapid analysis of the thermal spread of electrosurgical devices. Further, we were able to demonstrate that the optimal placement of surgical instruments has a significant impact on the thermal spread. This strategy might be useful to protect sensitive tissues during surgery.

Acknowledgements:

We would like to thank Covidien, Switzerland for their support in providing the instruments used for this study and Dr. Jennifer Olson and Damina Balmer for editorial assistance with this manuscript.

Conflicts of interest

The authors have nothing to disclose.

Legends to Illustrations

Figure 1 - Experimental setup:

a) A thin bovine muscle strip was placed on top of two perpendicular wires, laterally held by two clamps under constant tension. The strip was kept at a temperature of 30 °C in a water bath (WB). The muscle strip was coagulated with the vessel-sealing device. The temperature was measured by infrared camera (IC) and temperature probe (TP). b) Vessel sealing device only. c) One branch of the rectangular clamp placed on each side of the vessel-sealing device. d) Rectangular clamp placed on one side of the sealing device.

Figure 2 - Spatial temperature measurement Ligasure AXS:
Infrared camera measurement of the Ligasure AXS-Instrument. Representative images, top row: a & b) vessel sealing device (VSD) only; c & d) one branch of the rectangular clamp (*) placed on either side of the VSD; e & f) closed rectangular clamp (**) placed on one side of the VSD. Temperature values are presented in °C and distance is presented in mm. The orange line represents 45 °C, the critical temperature for nerve damage. The vertical gray bar represents the average temperature between branches of the clamp.

**Figure 3 - Spatial temperature measurement Ligasure Impact:**

Infrared camera measurement of the Ligasure Impact-Instrument. Representative images, top row: a & b) vessel sealing device (VSD) only; c & d) one branch of the rectangular clamp (*) placed on either side of the VSD; e & f) closed rectangular clamp (**) placed on one side of the VSD. Temperature values are presented in °C and distance is presented in mm. The orange line represents 45 °C, the critical temperature for nerve damage. The vertical gray bar represents the average temperature between branches of the clamp.

**Figure 4 – Histomorphological Analysis**

a) Representative H&E staining of muscle-fascial tissue after application of the vessel sealing device. The distance from the edge of the sealing device to the tissue area containing morphologically normal muscle tissue was measured. b) Distance (in mm) of thermal injury as shown by histological evaluation of Ligasure AXS-Instrument and for c) Ligasure Impact-Instrument. A) Without rectangular clamp (RC); B) one branch of the RC is placed on either side of the VSD; C) closed RC on one side of vessel sealing device (VSD).

**References**


Hurst BS, Matthews ML, Marshburn PB Laparoscopic myomectomy for symptomatic uterine myomas Fertil Steril 2005;83:1-23


Lepor H GM, Crosby R, Mostofi KM, Walsh PC: Precise localization of the autonomic nerves from the pelvic plexus to the corpora cavernosa: A detailed anatomical study of the adult male pelvis. The Journal of Urology 1985;133


Pietrow PK: Plasmakinetic bipolar vessel sealing: Burst pressures and thermal spread in an animal model. Journal of Endourology, Volume 19, Number 1, January/February 2005

Tulikangas PK: Assessment of laparoscopic injuries by three methods. Fertility and Sterility, Vol 76, No 4, october 2001


George Daskalopoulos1 IK, Ioannis Heretis1 and Dimitrios Delakas1 Electrothermal bipolar coagulation for radical prostatectomies and cystectomies: A preliminary case-controlled study Int Urol Nephrol 36(2):181-5 2004