Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-48192

Hoffmann, A; Nettels, D; Clark, J; Borgia, A; Radford, S E; Clarke, J; Schuler, B (2011). Quantifying heterogeneity and conformational dynamics from single molecule FRET of diffusing molecules: recurrence analysis of single particles (RASP). Physical Chemistry Chemical Physics (PCCP), 13(5):1857-1871.

[img]Published Version
PDF - Registered users only
4MB

View at publisher

Abstract

Single molecule Förster resonance energy transfer (FRET) experiments are a versatile method for investigating the conformational distributions and dynamics of biological macromolecules. In a common type of experiment, the fluorescence bursts from individual molecules freely diffusing in solution are detected as they pass through the observation volume of a confocal microscope. Correlation analysis of the fluorescence bursts shows that under typical experimental conditions, for time scales up to several tens of milliseconds, the probability for a molecule to return to the confocal volume is greater than the probability of a new molecule being detected. Here we present RASP (recurrence analysis of single particles), a method that is based on this recurrence behavior and allows us to significantly extend the information that can be extracted from single molecule FRET experiments. The number and peak shapes of subpopulations within the sample can be identified essentially in a model-free way by constructing recurrence FRET efficiency histograms. These are obtained by first selecting photon bursts from a small transfer efficiency range (initial bursts), and then building the FRET efficiency histogram only from bursts detected within a short time (the recurrence interval) after the initial bursts. Systematic variation of the recurrence interval allows the kinetics of interconversion between subpopulations to be determined on time scales from ~50 μs up to ~100 ms from equilibrium measurements. We demonstrate the applicability of the method on measurements of several peptides and proteins with different degrees of conformational heterogeneity and folding dynamics. The concepts presented here can be extended to other observables available from single molecule fluorescence experiments.

Citations

19 citations in Web of Science®
19 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 01 Jun 2011
0 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
DDC:570 Life sciences; biology
Language:English
Date:2011
Deposited On:01 Jun 2011 12:57
Last Modified:27 Nov 2013 18:55
Publisher:Royal Society of Chemistry
ISSN:1463-9076
Additional Information:Persons who receive the PDF must not make it further available or distribute it
Publisher DOI:10.1039/c0cp01911a
PubMed ID:21218223

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page