UZH-Logo

Maintenance Infos

Reionization of the Local Group of galaxies


Iliev, I T; Moore, B; Gottlöber, S; Yepes, G; Hoffman, Y; Mellema, G (2011). Reionization of the Local Group of galaxies. Monthly Notices of the Royal Astronomical Society, 413(3):2093-2102.

Abstract

We present the first detailed structure formation and radiative transfer simulations of the reionization history of our cosmic neighbourhood. To this end, we follow the formation of the Local Group of galaxies and nearby clusters by means of constrained simulations, which use the available observational constraints to construct a representation of those structures which reproduces their actual positions and properties at the present time. We find that the reionization history of the Local Group is strongly dependent on the assumed photon production efficiencies of the ionizing sources, which are still poorly constrained. If sources are relatively efficient, i.e. the process is 'photon-rich', the Local Group is primarily ionized externally by the nearby clusters. Alternatively, if the sources are inefficient, i.e. reionization is 'photon-poor' the Local Group evolves largely isolated and reionizes itself. The mode of reionization, external versus internal, has important implications for the evolution of our neighbourhood, in terms of e.g. its satellite galaxy populations and primordial stellar populations. This therefore provides an important avenue for understanding the young universe by detailed studies of our nearby structures.

We present the first detailed structure formation and radiative transfer simulations of the reionization history of our cosmic neighbourhood. To this end, we follow the formation of the Local Group of galaxies and nearby clusters by means of constrained simulations, which use the available observational constraints to construct a representation of those structures which reproduces their actual positions and properties at the present time. We find that the reionization history of the Local Group is strongly dependent on the assumed photon production efficiencies of the ionizing sources, which are still poorly constrained. If sources are relatively efficient, i.e. the process is 'photon-rich', the Local Group is primarily ionized externally by the nearby clusters. Alternatively, if the sources are inefficient, i.e. reionization is 'photon-poor' the Local Group evolves largely isolated and reionizes itself. The mode of reionization, external versus internal, has important implications for the evolution of our neighbourhood, in terms of e.g. its satellite galaxy populations and primordial stellar populations. This therefore provides an important avenue for understanding the young universe by detailed studies of our nearby structures.

Citations

15 citations in Web of Science®
15 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

31 downloads since deposited on 18 Feb 2012
7 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Language:English
Date:May 2011
Deposited On:18 Feb 2012 19:18
Last Modified:05 Apr 2016 14:55
Publisher:Wiley-Blackwell
ISSN:0035-8711 (P) 1365-2966 (E)
Additional Information:The definitive version is available at www3.interscience.wiley.com
Publisher DOI:10.1111/j.1365-2966.2011.18292.x
Related URLs:http://arxiv.org/abs/1005.3139
Permanent URL: http://doi.org/10.5167/uzh-48231

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 811kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations