UZH-Logo

Maintenance Infos

One and four layer acellular bladder matrix for fascial tissue reconstruction


Eberli, D; Atala, A; Yoo, J J (2011). One and four layer acellular bladder matrix for fascial tissue reconstruction. Journal of Materials Science: Materials in Medicine, 22(3):741-751.

Abstract

To determine whether the use of multiple layers of acellular bladder matrix (ABM) is more suitable for the treatment of abdominal wall hernia than a single layered ABM. The feasibility, biocompatibility and mechanical properties of both materials were assessed and compared. Biocompatibility testing was performed on 4 and 1 layered ABM. The matrices were used to repair an abdominal hernia model in 24 rabbits. The animals were followed for up to 3 months. Immediately after euthanasia, the implant site was inspected and samples were retrieved for histology, scanning electron microscopy and biomechanical studies. Both acellular biomaterials demonstrated excellent biocompatibility. At the time of retrieval, there was no evidence of infection. The matrices demonstrated biomechanical properties comparable to native tissue. Three hernias (25%) were found in the single layer ABM group and only 1 hernia (8%) was found in the 4 layer ABM group. Histologically, the matrix structure was intact and the cell density within the matrices decreased with time. The dominant cell type present within the matrices shifted from lymphocytes to fibroblasts over time. Both ABMs maintained adequate strength over time when used for hernia repair, and there was an extremely low incidence of adhesion formation. The single layer ABM showed enhanced cellular integration, while the 4 layer ABM reduced hernia formation. Either of these matrices may be useful as an off-the-shelf biomaterial for patients requiring fascial repair.

To determine whether the use of multiple layers of acellular bladder matrix (ABM) is more suitable for the treatment of abdominal wall hernia than a single layered ABM. The feasibility, biocompatibility and mechanical properties of both materials were assessed and compared. Biocompatibility testing was performed on 4 and 1 layered ABM. The matrices were used to repair an abdominal hernia model in 24 rabbits. The animals were followed for up to 3 months. Immediately after euthanasia, the implant site was inspected and samples were retrieved for histology, scanning electron microscopy and biomechanical studies. Both acellular biomaterials demonstrated excellent biocompatibility. At the time of retrieval, there was no evidence of infection. The matrices demonstrated biomechanical properties comparable to native tissue. Three hernias (25%) were found in the single layer ABM group and only 1 hernia (8%) was found in the 4 layer ABM group. Histologically, the matrix structure was intact and the cell density within the matrices decreased with time. The dominant cell type present within the matrices shifted from lymphocytes to fibroblasts over time. Both ABMs maintained adequate strength over time when used for hernia repair, and there was an extremely low incidence of adhesion formation. The single layer ABM showed enhanced cellular integration, while the 4 layer ABM reduced hernia formation. Either of these matrices may be useful as an off-the-shelf biomaterial for patients requiring fascial repair.

Citations

5 citations in Web of Science®
6 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

96 downloads since deposited on 06 Jun 2011
16 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Division of Surgical Research
04 Faculty of Medicine > University Hospital Zurich > Urological Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2011
Deposited On:06 Jun 2011 12:40
Last Modified:05 Apr 2016 14:55
Publisher:Springer
ISSN:0957-4530
Additional Information:The original publication is available at www.springerlink.com
Publisher DOI:https://doi.org/10.1007/s10856-011-4242-6
PubMed ID:21286788
Permanent URL: https://doi.org/10.5167/uzh-48244

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 2MB
View at publisher
[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 2MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations