UZH-Logo

Maintenance Infos

Global fits of the minimal universal extra dimensions scenario


Bertone, G; Kong, K; Ruiz de Austri, R; Trotta, R (2011). Global fits of the minimal universal extra dimensions scenario. Physical Review D, 83(3):036008 .

Abstract

In theories with universal extra dimensions (UED), the γ1 particle, first excited state of the hypercharge gauge boson, provides an excellent dark matter (DM) candidate. Here, we use a modified version of the SuperBayeS code to perform a Bayesian analysis of the minimal UED scenario, in order to assess its detectability at accelerators and with DM experiments. We derive, in particular, the most probable range of mass and scattering cross sections off nucleons, keeping into account cosmological and electroweak precision constraints. The consequences for the detectability of the γ1 with direct and indirect experiments are dramatic. The spin-independent cross section probability distribution peaks at ˜10-11pb, i.e. below the sensitivity of ton-scale experiments. The spin-dependent cross section drives the predicted neutrino flux from the center of the Sun below the reach of present and upcoming experiments. The only strategy that remains open appears to be direct detection with ton-scale experiments sensitive to spin-dependent cross sections. On the other hand, the LHC with 1fb-1 of data should be able to probe the current best-fit UED parameters.

In theories with universal extra dimensions (UED), the γ1 particle, first excited state of the hypercharge gauge boson, provides an excellent dark matter (DM) candidate. Here, we use a modified version of the SuperBayeS code to perform a Bayesian analysis of the minimal UED scenario, in order to assess its detectability at accelerators and with DM experiments. We derive, in particular, the most probable range of mass and scattering cross sections off nucleons, keeping into account cosmological and electroweak precision constraints. The consequences for the detectability of the γ1 with direct and indirect experiments are dramatic. The spin-independent cross section probability distribution peaks at ˜10-11pb, i.e. below the sensitivity of ton-scale experiments. The spin-dependent cross section drives the predicted neutrino flux from the center of the Sun below the reach of present and upcoming experiments. The only strategy that remains open appears to be direct detection with ton-scale experiments sensitive to spin-dependent cross sections. On the other hand, the LHC with 1fb-1 of data should be able to probe the current best-fit UED parameters.

Citations

19 citations in Web of Science®
15 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

155 downloads since deposited on 19 Feb 2012
19 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Language:English
Date:February 2011
Deposited On:19 Feb 2012 12:24
Last Modified:05 Apr 2016 14:55
Publisher:American Physical Society
ISSN:1550-7998 (P) 1089-4918 (E)
Publisher DOI:10.1103/PhysRevD.83.036008
Related URLs:http://arxiv.org/abs/1010.2023
Permanent URL: http://doi.org/10.5167/uzh-48253

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF (Version 1)
Size: 2MB
View at publisher
[img]
Preview
Content: Accepted Version
Filetype: PDF (Version 2)
Size: 2MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations