UZH-Logo

Recoiling massive black holes in gas-rich galaxy mergers


Guedes, J; Madau, P; Mayer, L; Callegari, S (2011). Recoiling massive black holes in gas-rich galaxy mergers. Astrophysical Journal, 729(2):125.

Abstract

The asymmetric emission of gravitational waves produced during the coalescence of a massive black hole (MBH) binary imparts a velocity "kick" to the system that can displace the hole from the center of its host. Here, we study the trajectories and observability of MBHs recoiling in three (one major, two minor) gas-rich galaxy merger remnants that were previously simulated at high resolution, and in which the pairing of the MBHs had been shown to be successful. We run new simulations of MBHs recoiling in the major merger remnant with Mach numbers in the range 1≤ {M} ≤ 6 and use simulation data to construct a semi-analytical model for the orbital evolution of MBHs in gas-rich systems. We show the following. (1) In major merger remnants the energy deposited by the moving hole into the rotationally supported, turbulent medium makes a negligible contribution to the thermodynamics of the gas. This contribution becomes significant in minor merger remnants, potentially allowing for an electromagnetic signature of MBH recoil. (2) In major merger remnants, the combination of both deeper central potential well and drag from high-density gas confines even MBHs with kick velocities as high as 1200 km s-1 within 1 kpc from the host's center. (3) Kinematically offset nuclei may be observable for timescales of a few Myr in major merger remnants in the case of recoil velocities in the range 700-1000 km s-1. (4) In minor merger remnants the effect of gas drag is weaker, and MBHs with recoil speeds in the range 300-600 km s-1 will wander through the host halo for longer timescales. When accounting for the probability distribution of kick velocities, however, we find that the likelihood of observing recoiling MBHs in gas-rich galaxy mergers is very low even in the best-case scenario.

The asymmetric emission of gravitational waves produced during the coalescence of a massive black hole (MBH) binary imparts a velocity "kick" to the system that can displace the hole from the center of its host. Here, we study the trajectories and observability of MBHs recoiling in three (one major, two minor) gas-rich galaxy merger remnants that were previously simulated at high resolution, and in which the pairing of the MBHs had been shown to be successful. We run new simulations of MBHs recoiling in the major merger remnant with Mach numbers in the range 1≤ {M} ≤ 6 and use simulation data to construct a semi-analytical model for the orbital evolution of MBHs in gas-rich systems. We show the following. (1) In major merger remnants the energy deposited by the moving hole into the rotationally supported, turbulent medium makes a negligible contribution to the thermodynamics of the gas. This contribution becomes significant in minor merger remnants, potentially allowing for an electromagnetic signature of MBH recoil. (2) In major merger remnants, the combination of both deeper central potential well and drag from high-density gas confines even MBHs with kick velocities as high as 1200 km s-1 within 1 kpc from the host's center. (3) Kinematically offset nuclei may be observable for timescales of a few Myr in major merger remnants in the case of recoil velocities in the range 700-1000 km s-1. (4) In minor merger remnants the effect of gas drag is weaker, and MBHs with recoil speeds in the range 300-600 km s-1 will wander through the host halo for longer timescales. When accounting for the probability distribution of kick velocities, however, we find that the likelihood of observing recoiling MBHs in gas-rich galaxy mergers is very low even in the best-case scenario.

Citations

34 citations in Web of Science®
20 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

96 downloads since deposited on 18 Feb 2012
19 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Language:English
Date:March 2011
Deposited On:18 Feb 2012 12:37
Last Modified:05 Apr 2016 14:55
Publisher:IOP Publishing
ISSN:0004-637X (P) 1538-4357 (E)
Publisher DOI:10.1088/0004-637X/729/2/125
Related URLs:http://arxiv.org/abs/1008.2032
Permanent URL: http://doi.org/10.5167/uzh-48270

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF (Version 2)
Size: 6MB
View at publisher
[img]
Preview
Content: Accepted Version
Filetype: PDF (Version 1)
Size: 3MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations