Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-48284

Williams, L L R; Saha, P (2011). Light/mass offsets in the lensing cluster Abell 3827: evidence for collisional dark matter? Monthly Notices of the Royal Astronomical Society, 415(1):448-460.

[img]
Preview
Accepted Version
PDF (Version 1)
765Kb
[img]
Preview
Accepted Version
PDF (Version 2)
766Kb

Abstract

If dark matter has a non-zero self-interaction cross-section, then dark matter haloes of individual galaxies in cluster cores should experience a drag force from the ambient dark matter of the cluster, which will not affect the stellar components of galaxies, and thus will lead to a separation between the stellar and dark matter. If the cross-section is only a few decades below its current astrophysically determined upper limit, then kpc-scale separations should result. However, such separations will be observable only under very favourable conditions. Abell 3827 is a nearby late stage cluster merger with four massive central ellipticals within 20 kpc of each other. The 10 strong lensing images tightly surrounding the ellipticals provide an excellent set of constraints for a free-form lens reconstruction. Our free-form mass maps show a massive dark extended clump, about 6 kpc from one of the ellipticals. The robustness of this result has been tested with many reconstructions, and confirmed with experiments using synthetic lens mass distributions. Interpreted in terms of dark matter collisionality, our result yields σ/m≳ 4.5 10-7 (t/1010 yr)-2 cm2 g-1, where t is the merger’s age.

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Theoretical Physics
DDC:530 Physics
Language:English
Date:April 2011
Deposited On:18 Feb 2012 21:29
Last Modified:20 Apr 2014 03:35
Publisher:Wiley-Blackwell
ISSN:0035-8711 (P) 1365-2966 (E)
Additional Information:The definitive version is available at www3.interscience.wiley.com]
Publisher DOI:10.1111/j.1365-2966.2011.18716.x
Related URLs:http://arxiv.org/abs/1102.3943
Citations:Web of Science®. Times Cited: 7
Google Scholar™

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page