UZH-Logo

Maintenance Infos

Advantages and limitations of intraoperative 3D ultrasound in neurosurgery. Technical note


Bozinov, O; Burkhardt, J K; Fischer, C M; Kockro, R A; Bernays, R L; Bertalanffy, H (2011). Advantages and limitations of intraoperative 3D ultrasound in neurosurgery. Technical note. In: Pamir, M N; Seifert, V; Kiris, T. Intraoperative Imaging. Wien: Springer, 191-196.

Abstract

Three-dimensional ultrasound (US) technology is supposed to help combat some of the orientation difficulties inherent to two-dimensional US. Contemporary navigation solutions combine reconstructed 3D US images with common navigation images and support orientation. New real-time 3D US (without neuronavigation) is more time effective, but whether it further assists in orientation remains to be determined. An integrated US system (IGSonic, VectorVision, BrainLAB, Munich Germany) and a non-integrated system with real-time 3D US (iU22, Philips, Bothell, USA) were recently compared in neurosurgical procedures in our group. The reconstructed navigation view was time-consuming, but images were displayed in familiar planes (e.g., axial, sagittal, coronal). Further potential applications of US angiography and pure US navigation are possible. Real-time 3D images were displayed without the need for an additional acquisition and reconstruction process, but spatial orientation remained challenging in this preliminary testing phase. Reconstructed 3D US navigation appears to be superior with respect to spatial orientation, and the technique can be combined with other imaging data. However, the potential of real-time 3D US imaging is promising.

Three-dimensional ultrasound (US) technology is supposed to help combat some of the orientation difficulties inherent to two-dimensional US. Contemporary navigation solutions combine reconstructed 3D US images with common navigation images and support orientation. New real-time 3D US (without neuronavigation) is more time effective, but whether it further assists in orientation remains to be determined. An integrated US system (IGSonic, VectorVision, BrainLAB, Munich Germany) and a non-integrated system with real-time 3D US (iU22, Philips, Bothell, USA) were recently compared in neurosurgical procedures in our group. The reconstructed navigation view was time-consuming, but images were displayed in familiar planes (e.g., axial, sagittal, coronal). Further potential applications of US angiography and pure US navigation are possible. Real-time 3D images were displayed without the need for an additional acquisition and reconstruction process, but spatial orientation remained challenging in this preliminary testing phase. Reconstructed 3D US navigation appears to be superior with respect to spatial orientation, and the technique can be combined with other imaging data. However, the potential of real-time 3D US imaging is promising.

Citations

Altmetrics

Downloads

6 downloads since deposited on 09 Jun 2011
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Book Section, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neurosurgery
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2011
Deposited On:09 Jun 2011 13:17
Last Modified:05 Apr 2016 14:56
Publisher:Springer
Series Name:Acta Neurochirurgica Supplementum
Number:109/6
ISSN:0065-1419
ISBN:978-3-211-99650-8
Publisher DOI:https://doi.org/10.1007/978-3-211-99651-5_30
PubMed ID:20960342
Permanent URL: https://doi.org/10.5167/uzh-48348

Download

[img]
Content: Accepted Version
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations