Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, 5.7.2016, 07:00-08:00

Maintenance work on ZORA and JDB on Tuesday, 5th July, 07h00-08h00. During this time there will be a brief unavailability for about 1 hour. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-48413

Perakis, F; Hamm, P (2011). Two-dimensional infrared spectroscopy of supercooled water. Journal of Physical Chemistry. B, 115(18):5289-5293.

Accepted Version
View at publisher


We present two-dimensional infrared (2D IR) spectra of the OD stretch vibration of isotope diluted water (HOD/H2O) from ambient conditions (293 K) down to the metastable supercooled regime (260 K). We observe that spectral diffusion slows down from 700 fs to 2.6 ps as we lower the temperature. A comparison between measurements performed at the magic angle with those at parallel polarization shows that the 2D IR line shape is affected by the frequency-dependent anisotropy decay in the case of parallel polarization, altering the extracted correlation decay. A fit within the framework of an Arrhenius law reveals an activation energy of Ea = 6.2 ± 0.2 kcal/mol and a pre-exponential factor of 1/A = 0.02 ± 0.01 fs. Alternatively, a power law fit results in an exponent γ = 2.2 and a singularity temperature Ts = 221 K. We tentatively conclude that the power law provides the better physical picture to describe the dynamics of liquid water around the freezing point.


30 citations in Web of Science®
29 citations in Scopus®
Google Scholar™



213 downloads since deposited on 09 Sep 2011
33 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Deposited On:09 Sep 2011 12:29
Last Modified:05 Apr 2016 14:56
Publisher:American Chemical Society
Funders:Swiss National Science Foundation (SNF) trough NCCR MUST
Additional Information:This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry. B, copyright © American Chemical Society after peer review and technical editing by the publisher.
Publisher DOI:10.1021/jp1092288
PubMed ID:21114305

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page