UZH-Logo

Maintenance Infos

Sex-specific control of Sex-lethal is a conserved mechanism for sex determination in the genus Drosophila.


Bopp, D; Calhoun, G; Horabin, J I; Samuels, M; Schedl, P (1996). Sex-specific control of Sex-lethal is a conserved mechanism for sex determination in the genus Drosophila. Development, 122(3):971-982.

Abstract

In D. melanogaster the binary switch gene Sex-lethal (Sxl) plays a pivotal role in somatic sex determination -- when the Sxl gene is on the female pathway is followed, while the male pathway is followed when the gene is off. In the present study we have asked whether the Sxl gene is present in other species of the genus Drosophila and whether it is subject to a similar sex-specific on-off regulation. Sxl proteins were found in all of the drosophilids examined, and they display a sex-specific pattern of expression. Furthermore, characterization of the Sxl gene in the distant drosophilan relative, D. virilis, reveals that the structure and sequence organization of the gene has been well conserved and that, like melanogaster, alternative RNA processing is responsible for its sex-specific expression. Hence, this posttranscriptional on-off regulatory mechanism probably existed before the separation of the drosophilan and sophophoran subgenera and it seems likely that Sxl functions as a sex determination switch gene in most species in the Drosophila genus. Although alternative splicing appears to be responsible for the on-off regulation of the Sxl gene in D. virilis, this species is unusual in that Sxl proteins are present not only in females but also in males. The D. virilis female and male proteins appear to be identical over most of the length except for the amino-terminal approx. 25 aa which are encoded by the differentially spliced exons. In transcriptionally active polytene chromosomes, the male and female proteins bind to the same cytogenetic loci, including the sites corresponding to the D. virilis Sxl and tra genes. Hence, though the male proteins are able to interact with appropriate target pre-mRNAs, they are apparently incapable of altering the splicing pattern of these pre-mRNAs.

In D. melanogaster the binary switch gene Sex-lethal (Sxl) plays a pivotal role in somatic sex determination -- when the Sxl gene is on the female pathway is followed, while the male pathway is followed when the gene is off. In the present study we have asked whether the Sxl gene is present in other species of the genus Drosophila and whether it is subject to a similar sex-specific on-off regulation. Sxl proteins were found in all of the drosophilids examined, and they display a sex-specific pattern of expression. Furthermore, characterization of the Sxl gene in the distant drosophilan relative, D. virilis, reveals that the structure and sequence organization of the gene has been well conserved and that, like melanogaster, alternative RNA processing is responsible for its sex-specific expression. Hence, this posttranscriptional on-off regulatory mechanism probably existed before the separation of the drosophilan and sophophoran subgenera and it seems likely that Sxl functions as a sex determination switch gene in most species in the Drosophila genus. Although alternative splicing appears to be responsible for the on-off regulation of the Sxl gene in D. virilis, this species is unusual in that Sxl proteins are present not only in females but also in males. The D. virilis female and male proteins appear to be identical over most of the length except for the amino-terminal approx. 25 aa which are encoded by the differentially spliced exons. In transcriptionally active polytene chromosomes, the male and female proteins bind to the same cytogenetic loci, including the sites corresponding to the D. virilis Sxl and tra genes. Hence, though the male proteins are able to interact with appropriate target pre-mRNAs, they are apparently incapable of altering the splicing pattern of these pre-mRNAs.

Citations

56 citations in Web of Science®
57 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

154 downloads since deposited on 11 Feb 2008
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:1 March 1996
Deposited On:11 Feb 2008 12:15
Last Modified:05 Apr 2016 12:14
Publisher:Company of Biologists
ISSN:0950-1991
Related URLs:http://dev.biologists.org/cgi/content/abstract/122/3/971
PubMed ID:8631274
Permanent URL: http://doi.org/10.5167/uzh-487

Download

[img]
Preview
Filetype: PDF
Size: 512kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations