Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-48752

Osto, M; Zini, E; Franchini, M; Wolfrum, C; Guscetti, F; Hafner, M; Ackermann, M; Reusch, C E; Lutz, T A (2011). Subacute endotoxemia induces adipose inflammation and changes in lipid and lipoprotein metabolism in cats. Endocrinology, 152(3):804-815.

[img]
Preview
Accepted Version
PDF
1MB

View at publisher
[img]
Preview
Published Version
PDF
2MB

Abstract

Acute inflammation in humans is associated with transient insulin resistance (IR) and dyslipidemia. Chronic low-grade inflammation is a pathogenic component of IR and adipose tissue dysfunction in obesity-induced type 2 diabetes. Because feline diabetes closely resembles human type 2 diabetes, we studied whether lipopolysaccharide (LPS)-induced subacute inflammation, in the absence of obesity, is the potential primary cause of IR and metabolic disorders. Cats received increasing iv doses (10-1000 ng/kg(-1) · h(-1)) of LPS (n = 5) or saline (n = 5) for 10 d. Body temperature, proinflammatory and metabolic markers, and insulin sensitivity were measured daily. Tissue mRNA and protein expression were quantified on d 10. LPS infusion increased circulating and tissue markers of inflammation. Based on the homeostasis model assessment, endotoxemia induced transient IR and β-cell dysfunction. At the whole-body level, IR reverted after the 10-d treatment; however, tissue-specific indications of IR were observed, such as down-regulation of adipose glucose transporter 4, hepatic peroxisome proliferative activated receptor-γ1 and -2, and muscle insulin receptor substrate-1. In adipose tissue, increased hormone-sensitive lipase activity led to reduced adipocyte size, concomitant with increased plasma and hepatic triglyceride content and decreased total and high-density lipoprotein cholesterol levels. Prolonged LPS-induced inflammation caused acute IR, followed by long-lasting tissue-specific dysfunctions of lipid-, glucose-, and insulin metabolism-related targets; this ultimately resulted in dyslipidemia but not whole-body IR. Endotoxemia in cats may provide a promising model to study the cross talk between metabolic and inflammatory responses in the development of adipose tissue dysfunction and IR.

Citations

10 citations in Web of Science®
12 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

60 downloads since deposited on 21 Jul 2011
35 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Veterinary Physiology
05 Vetsuisse Faculty > Institute of Veterinary Pathology
05 Vetsuisse Faculty > Institute of Virology
05 Vetsuisse Faculty > Veterinary Clinic > Department of Small Animals
DDC:570 Life sciences; biology
Language:English
Date:2011
Deposited On:21 Jul 2011 07:37
Last Modified:30 Oct 2014 15:50
Publisher:Endocrine Society
ISSN:0013-7227
Publisher DOI:10.1210/en.2010-0999
PubMed ID:21266508

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page