Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Widdick, D A; Hicks, M G; Thompson, B J; Tschumi, A; Chandra, G; Sutcliffe, I C; Brülle, J K; Sander, P; Palmer, T; Hutchings, M I (2011). Dissecting the complete lipoprotein biogenesis pathway in Streptomyces scabies. Molecular Microbiology, 80(5):1395-1412.

Full text not available from this repository.

Abstract

Following translocation, bacterial lipoproteins are lipidated by lipoprotein diacylglycerol transferase (Lgt) and cleaved of their signal peptides by lipoprotein signal peptidase (Lsp). In Gram-negative bacteria and mycobacteria, lipoproteins are further lipidated by lipoprotein N-acyl transferase (Lnt), to give triacylated lipoproteins. Streptomyces are unusual amongst Gram-positive bacteria because they export large numbers of lipoproteins via the twin arginine protein transport (Tat) pathway. Furthermore, some Streptomyces species encode two Lgt homologues and all Streptomyces species encode two homologues of Lnt. Here we characterize lipoprotein biogenesis in the plant pathogen Streptomyces scabies and report that lgt and lsp mutants are defective in growth and development while only moderately affected in virulence. Lipoproteins are lost from the membrane in an S. scabies lgt mutant but restored by expression of Streptomyces coelicolor lgt1 or lgt2 confirming that both encode functional Lgt enzymes. Furthermore, lipoproteins are N-acylated in Streptomyces with efficient N-acylation dependent on Lnt1 and Lnt2. However, deletion of lnt1 and lnt2 has no effect on growth, development or virulence. We thus present a detailed study of lipoprotein biogenesis in Streptomyces, the first study of Lnt function in a monoderm bacterium and the first study of bacterial lipoproteins as virulence factors in a plant pathogen.

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Medical Microbiology
DDC:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2011
Deposited On:21 Jul 2011 12:56
Last Modified:27 Nov 2013 23:52
Publisher:Wiley-Blackwell
ISSN:0950-382X
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:10.1111/j.1365-2958.2011.07656.x
PubMed ID:21477129
Citations:Web of Science®. Times Cited: 16
Google Scholar™

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page