UZH-Logo

Dissecting the complete lipoprotein biogenesis pathway in Streptomyces scabies


Widdick, D A; Hicks, M G; Thompson, B J; Tschumi, A; Chandra, G; Sutcliffe, I C; Brülle, J K; Sander, P; Palmer, T; Hutchings, M I (2011). Dissecting the complete lipoprotein biogenesis pathway in Streptomyces scabies. Molecular Microbiology, 80(5):1395-1412.

Abstract

Following translocation, bacterial lipoproteins are lipidated by lipoprotein diacylglycerol transferase (Lgt) and cleaved of their signal peptides by lipoprotein signal peptidase (Lsp). In Gram-negative bacteria and mycobacteria, lipoproteins are further lipidated by lipoprotein N-acyl transferase (Lnt), to give triacylated lipoproteins. Streptomyces are unusual amongst Gram-positive bacteria because they export large numbers of lipoproteins via the twin arginine protein transport (Tat) pathway. Furthermore, some Streptomyces species encode two Lgt homologues and all Streptomyces species encode two homologues of Lnt. Here we characterize lipoprotein biogenesis in the plant pathogen Streptomyces scabies and report that lgt and lsp mutants are defective in growth and development while only moderately affected in virulence. Lipoproteins are lost from the membrane in an S. scabies lgt mutant but restored by expression of Streptomyces coelicolor lgt1 or lgt2 confirming that both encode functional Lgt enzymes. Furthermore, lipoproteins are N-acylated in Streptomyces with efficient N-acylation dependent on Lnt1 and Lnt2. However, deletion of lnt1 and lnt2 has no effect on growth, development or virulence. We thus present a detailed study of lipoprotein biogenesis in Streptomyces, the first study of Lnt function in a monoderm bacterium and the first study of bacterial lipoproteins as virulence factors in a plant pathogen.

Following translocation, bacterial lipoproteins are lipidated by lipoprotein diacylglycerol transferase (Lgt) and cleaved of their signal peptides by lipoprotein signal peptidase (Lsp). In Gram-negative bacteria and mycobacteria, lipoproteins are further lipidated by lipoprotein N-acyl transferase (Lnt), to give triacylated lipoproteins. Streptomyces are unusual amongst Gram-positive bacteria because they export large numbers of lipoproteins via the twin arginine protein transport (Tat) pathway. Furthermore, some Streptomyces species encode two Lgt homologues and all Streptomyces species encode two homologues of Lnt. Here we characterize lipoprotein biogenesis in the plant pathogen Streptomyces scabies and report that lgt and lsp mutants are defective in growth and development while only moderately affected in virulence. Lipoproteins are lost from the membrane in an S. scabies lgt mutant but restored by expression of Streptomyces coelicolor lgt1 or lgt2 confirming that both encode functional Lgt enzymes. Furthermore, lipoproteins are N-acylated in Streptomyces with efficient N-acylation dependent on Lnt1 and Lnt2. However, deletion of lnt1 and lnt2 has no effect on growth, development or virulence. We thus present a detailed study of lipoprotein biogenesis in Streptomyces, the first study of Lnt function in a monoderm bacterium and the first study of bacterial lipoproteins as virulence factors in a plant pathogen.

Citations

22 citations in Web of Science®
22 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Medical Microbiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2011
Deposited On:21 Jul 2011 10:56
Last Modified:05 Apr 2016 14:57
Publisher:Wiley-Blackwell
ISSN:0950-382X
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:10.1111/j.1365-2958.2011.07656.x
PubMed ID:21477129

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations