UZH-Logo

Maintenance Infos

Semiempirical self-consistent polarization description of bulk water, the liquid-vapor interface, and cubic ice


Murdachaew, G; Mundy, C J; Schenter, G K; Laino, T; Hutter, J (2011). Semiempirical self-consistent polarization description of bulk water, the liquid-vapor interface, and cubic ice. Journal of Physical Chemistry. A, 115(23):6046-6053.

Abstract

We have applied an efficient electronic structure approach, the semiempirical self-consistent polarization neglect of diatomic differential overlap (SCP-NDDO) method, previously parametrized to reproduce properties of water clusters by Chang, Schenter, and Garrett J. Chem. Phys. 2008, 128, 164111] and now implemented in the CP2K package, to model ambient liquid water at 300 K (both the bulk and the liquid-vapor interface) and cubic ice at 15 and 250 K The SCP-NDDO potential retains its transferability and good performance across the full range of conditions encountered in the clusters and the bulk phases of water. In particular, we obtain good results for the density, radial distribution functions, enthalpy of vaporization, self-diffusion coefficient, molecular dipole moment distribution, and hydrogen bond populations, in comparison to experimental measurements.

We have applied an efficient electronic structure approach, the semiempirical self-consistent polarization neglect of diatomic differential overlap (SCP-NDDO) method, previously parametrized to reproduce properties of water clusters by Chang, Schenter, and Garrett J. Chem. Phys. 2008, 128, 164111] and now implemented in the CP2K package, to model ambient liquid water at 300 K (both the bulk and the liquid-vapor interface) and cubic ice at 15 and 250 K The SCP-NDDO potential retains its transferability and good performance across the full range of conditions encountered in the clusters and the bulk phases of water. In particular, we obtain good results for the density, radial distribution functions, enthalpy of vaporization, self-diffusion coefficient, molecular dipole moment distribution, and hydrogen bond populations, in comparison to experimental measurements.

Citations

17 citations in Web of Science®
17 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

221 downloads since deposited on 04 Aug 2011
39 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2011
Deposited On:04 Aug 2011 06:57
Last Modified:05 Apr 2016 14:58
Publisher:American Chemical Society
ISSN:1089-5639
Additional Information:This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry A, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/jp110481m.
Publisher DOI:10.1021/jp110481m
PubMed ID:21370904
Other Identification Number:ISI:000291338800037
Permanent URL: http://doi.org/10.5167/uzh-48895

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations