UZH-Logo

Maintenance Infos

Single-trial classification of motor imagery differing in task complexity: a functional near-infrared spectroscopy study - Zurich Open Repository and Archive


Holper, L; Wolf, M (2011). Single-trial classification of motor imagery differing in task complexity: a functional near-infrared spectroscopy study. Journal of Neuroengineering and Rehabilitation, 8:34.

Abstract

Background: For brain computer interfaces (BCIs), which may be valuable in neurorehabilitation, brain signals derived from mental activation can be monitored by non-invasive methods, such as functional near-infrared spectroscopy (fNIRS). Single-trial classification is important for this purpose and this was the aim of the presented study. In particular, we aimed to investigate a combined approach: 1) offline single-trial classification of brain signals derived from a novel wireless fNIRS instrument; 2) to use motor imagery (MI) as mental task thereby discriminating between MI signals in response to different tasks complexities, i.e. simple and complex MI tasks.
Methods: 12 subjects were asked to imagine either a simple finger-tapping task using their right thumb or a complex sequential finger-tapping task using all fingers of their right hand. fNIRS was recorded over secondary motor areas of the contralateral hemisphere. Using Fisher's linear discriminant analysis (FLDA) and cross validation, we selected for each subject a best-performing feature combination consisting of 1) one out of three channel, 2) an analysis time interval ranging from 5-15 s after stimulation onset and 3) up to four Δ[O2Hb] signal features (Δ[O2Hb] mean signal amplitudes, variance, skewness and kurtosis).
Results: The results of our single-trial classification showed that using the simple combination set of channels, time intervals and up to four Δ[O2Hb] signal features comprising Δ[O2Hb] mean signal amplitudes, variance, skewness and kurtosis, it was possible to discriminate single-trials of MI tasks differing in complexity, i.e. simple versus complex tasks (inter-task paired t-test p ≤ 0.001), over secondary motor areas with an average classification accuracy of 81%.
Conclusions: Although the classification accuracies look promising they are nevertheless subject of considerable subject-to-subject variability. In the discussion we address each of these aspects, their limitations for future approaches in single-trial classification and their relevance for neurorehabilitation.

Abstract

Background: For brain computer interfaces (BCIs), which may be valuable in neurorehabilitation, brain signals derived from mental activation can be monitored by non-invasive methods, such as functional near-infrared spectroscopy (fNIRS). Single-trial classification is important for this purpose and this was the aim of the presented study. In particular, we aimed to investigate a combined approach: 1) offline single-trial classification of brain signals derived from a novel wireless fNIRS instrument; 2) to use motor imagery (MI) as mental task thereby discriminating between MI signals in response to different tasks complexities, i.e. simple and complex MI tasks.
Methods: 12 subjects were asked to imagine either a simple finger-tapping task using their right thumb or a complex sequential finger-tapping task using all fingers of their right hand. fNIRS was recorded over secondary motor areas of the contralateral hemisphere. Using Fisher's linear discriminant analysis (FLDA) and cross validation, we selected for each subject a best-performing feature combination consisting of 1) one out of three channel, 2) an analysis time interval ranging from 5-15 s after stimulation onset and 3) up to four Δ[O2Hb] signal features (Δ[O2Hb] mean signal amplitudes, variance, skewness and kurtosis).
Results: The results of our single-trial classification showed that using the simple combination set of channels, time intervals and up to four Δ[O2Hb] signal features comprising Δ[O2Hb] mean signal amplitudes, variance, skewness and kurtosis, it was possible to discriminate single-trials of MI tasks differing in complexity, i.e. simple versus complex tasks (inter-task paired t-test p ≤ 0.001), over secondary motor areas with an average classification accuracy of 81%.
Conclusions: Although the classification accuracies look promising they are nevertheless subject of considerable subject-to-subject variability. In the discussion we address each of these aspects, their limitations for future approaches in single-trial classification and their relevance for neurorehabilitation.

Citations

19 citations in Web of Science®
28 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

85 downloads since deposited on 08 Aug 2011
9 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neonatology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2011
Deposited On:08 Aug 2011 08:24
Last Modified:22 Dec 2016 15:06
Publisher:BioMed Central
ISSN:1743-0003
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/1743-0003-8-34
PubMed ID:21682906

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 3MB
View at publisher
Licence: Creative Commons: Attribution 2.0 Generic (CC BY 2.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations