Quick Search:

is currently disabled due to reindexing of the ZORA database. Please use Advanced Search.
uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Schmid, M R; Loughran, S P; Regel, S J; Murbach, M; Bratic Grunauer, A; Rusterholz, T; Bersagliere, A; Kuster, N; Achermann, P (2012). Sleep EEG alterations: effects of different pulse-modulated radio frequency electromagnetic fields. Journal of Sleep Research, 21(1):50-58.

Full text not available from this repository.

Abstract

Previous studies have observed increases in electroencephalographic power during sleep in the spindle frequency range (approximately 11-15 Hz) after exposure to mobile phone-like radio frequency electromagnetic fields (RF EMF). Results also suggest that pulse modulation of the signal is crucial to induce these effects. Nevertheless, it remains unclear which specific elements of the field are responsible for the observed changes. We investigated whether pulse-modulation frequency components in the range of sleep spindles may be involved in mediating these effects. Thirty young healthy men were exposed, at weekly intervals, to three different conditions for 30 min directly prior to an 8-h sleep period. Exposure consisted of a 900-MHz RF EMF, pulse modulated at 14 Hz or 217 Hz, and a sham control condition. Both active conditions had a peak spatial specific absorption rate of 2 W kg(-1) . During exposure subjects performed three different cognitive tasks (measuring attention, reaction speed and working memory), which were presented in a fixed order. Electroencephalographic power in the spindle frequency range was increased during non-rapid eye movement sleep (2nd episode) following the 14-Hz pulse-modulated condition. A similar but non-significant increase was also observed following the 217-Hz pulse-modulated condition. Importantly, this exposure-induced effect showed considerable individual variability. Regarding cognitive performance, no clear exposure-related effects were seen. Consistent with previous findings, our results provide further evidence that pulse-modulated RF EMF alter brain physiology, although the time-course of the effect remains variable across studies. Additionally, we demonstrated that modulation frequency components within a physiological range may be sufficient to induce these effects.

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
04 Faculty of Medicine > Institute of Biomedical Engineering
DDC:570 Life sciences; biology
170 Ethics
610 Medicine & health
Language:English
Date:2012
Deposited On:19 Aug 2011 09:04
Last Modified:27 Nov 2013 17:09
Publisher:Wiley-Blackwell
ISSN:0962-1105
Publisher DOI:10.1111/j.1365-2869.2011.00918.x
PubMed ID:21489004
Citations:Web of Science®. Times Cited: 11
Google Scholar™
Scopus®. Citation Count: 13

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page