UZH-Logo

A comparison of anthropometric and training characteristics of Ironman triathletes and Triple Iron ultra-triathletes


Knechtle, B; Knechtle, P; Rüst, C A; Rosemann, T (2011). A comparison of anthropometric and training characteristics of Ironman triathletes and Triple Iron ultra-triathletes. Journal of Sports Sciences, 29(13):1373-1380.

Abstract

Abstract We examined differences in anthropometry and training between 64 Triple Iron ultra-triathletes competing over 11.4 km swimming, 540 km cycling, and 126.6 km running, and 71 Ironman triathletes competing over 3.8 km swimming, 180 km cycling, and 42.2 km running. The association of anthropometry and training with race time was investigated using multiple linear regression analysis. The Triple Iron ultra-triathletes were smaller (P < 0.05), had shorter limbs (P < 0.05), a higher body mass index (P < 0.05), and larger limb circumferences (P < 0.01) than the Ironman triathletes. The Triple Iron ultra-triathletes trained for more hours (P < 0.01) and covered more kilometres (P < 0.01), but speed in running during training was slower compared with the Ironman triathletes (P < 0.01). For Triple Iron ultra-triathletes, percent body fat (P = 0.022), training volume per week (P < 0.0001), and weekly kilometres in both cycling (P < 0.0001) and running (P < 0.0001) were related to race time. For Ironman triathletes, percent body fat (P < 0.0001), circumference of upper arm (P = 0.006), and speed in cycling training (P = 0.012) were associated with total race time. We conclude that both Triple Iron ultra-triathletes and Ironman triathletes appeared to profit from low body fat. Triple Iron ultra-triathletes relied more on training volume in cycling and running, whereas speed in cycling training was related to race time in Ironman triathletes.

Abstract We examined differences in anthropometry and training between 64 Triple Iron ultra-triathletes competing over 11.4 km swimming, 540 km cycling, and 126.6 km running, and 71 Ironman triathletes competing over 3.8 km swimming, 180 km cycling, and 42.2 km running. The association of anthropometry and training with race time was investigated using multiple linear regression analysis. The Triple Iron ultra-triathletes were smaller (P < 0.05), had shorter limbs (P < 0.05), a higher body mass index (P < 0.05), and larger limb circumferences (P < 0.01) than the Ironman triathletes. The Triple Iron ultra-triathletes trained for more hours (P < 0.01) and covered more kilometres (P < 0.01), but speed in running during training was slower compared with the Ironman triathletes (P < 0.01). For Triple Iron ultra-triathletes, percent body fat (P = 0.022), training volume per week (P < 0.0001), and weekly kilometres in both cycling (P < 0.0001) and running (P < 0.0001) were related to race time. For Ironman triathletes, percent body fat (P < 0.0001), circumference of upper arm (P = 0.006), and speed in cycling training (P = 0.012) were associated with total race time. We conclude that both Triple Iron ultra-triathletes and Ironman triathletes appeared to profit from low body fat. Triple Iron ultra-triathletes relied more on training volume in cycling and running, whereas speed in cycling training was related to race time in Ironman triathletes.

Citations

12 citations in Web of Science®
20 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of General Practice
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2011
Deposited On:22 Aug 2011 10:10
Last Modified:05 Apr 2016 14:59
Publisher:Taylor & Francis
ISSN:0264-0414
Publisher DOI:10.1080/02640414.2011.587442
Official URL:http://dx.doi.org/10.1080/02640414.2011.587442
PubMed ID:21834654

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations