Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-49211

Huwiler, A; Bourquin, F; Kotelevets, N; Pastukhov, O; Capitani, G; Grütter, M G; Zangemeister-Wittke, U (2011). A prokaryotic S1P lyase degrades extracellular S1P in vitro and in vivo: Implication for treating hyperproliferative disorders. PLoS ONE, 6(8):e22436.

[img]
Preview
Published Version
PDF
2MB

View at publisher

Abstract

Sphingosine-1-phosphate (S1P) regulates a broad spectrum of fundamental cellular processes like proliferation, death, migration and cytokine production. Therefore, elevated levels of S1P may be causal to various pathologic conditions including cancer, fibrosis, inflammation, autoimmune diseases and aberrant angiogenesis. Here we report that S1P lyase from the prokaryote Symbiobacterium thermophilum (StSPL) degrades extracellular S1P in vitro and in blood. Moreover, we investigated its effect on cellular responses typical of fibrosis, cancer and aberrant angiogenesis using renal mesangial cells, endothelial cells, breast (MCF-7) and colon (HCT 116) carcinoma cells as disease models. In all cell types, wild-type StSPL, but not an inactive mutant, disrupted MAPK phosphorylation stimulated by exogenous S1P. Functionally, disruption of S1P receptor signaling by S1P depletion inhibited proliferation and expression of connective tissue growth factor in mesangial cells, proliferation, migration and VEGF expression in carcinoma cells, and proliferation and migration of endothelial cells. Upon intravenous injection of StSPL in mice, plasma S1P levels rapidly declined by 70% within 1 h and then recovered to normal 6 h after injection. Using the chicken chorioallantoic membrane model we further demonstrate that also under in vivo conditions StSPL, but not the inactive mutant, inhibited tumor cell-induced angiogenesis as an S1P-dependent process. Our data demonstrate that recombinant StSPL is active under extracellular conditions and holds promise as a new enzyme therapeutic for diseases associated with increased levels of S1P and S1P receptor signaling.

Citations

7 citations in Web of Science®
10 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

63 downloads since deposited on 24 Aug 2011
14 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
DDC:570 Life sciences; biology
Language:English
Date:2011
Deposited On:24 Aug 2011 14:51
Last Modified:12 Nov 2014 12:24
Publisher:Public Library of Science (PLoS)
ISSN:1932-6203
Publisher DOI:10.1371/journal.pone.0022436
PubMed ID:21829623

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page