UZH-Logo

Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012


Galluzzi, L; Vitale, I; Abrams, J M; Alnemri, E S; Baehrecke, E H; Blagosklonny, M V; Dawson, T M; Dawson, V L; El-Deiry, W S; Fulda, S; Gottlieb, E; Green, D R; Hengartner, M O; Kepp, O; Knight, R A; Kumar, S; Lipton, S A; Lu, X; Madeo, F; Malorni, W; Mehlen, P; Nuñez, G; Peter, M E; Piacentini, M; Rubinsztein, D C; Shi, Y; Simon, H U; Vandenabeele, P; White, E; Yuan, J; Zhivotovsky, B; Melino, G; Kroemer, G (2012). Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death and Differentiation, 19(1):107-120.

Abstract

In 2009, the Nomenclature Committee on Cell Death (NCCD) proposed a set of recommendations for the definition of distinct cell death morphologies and for the appropriate use of cell death-related terminology, including 'apoptosis', 'necrosis' and 'mitotic catastrophe'. In view of the substantial progress in the biochemical and genetic exploration of cell death, time has come to switch from morphological to molecular definitions of cell death modalities. Here we propose a functional classification of cell death subroutines that applies to both in vitro and in vivo settings and includes extrinsic apoptosis, caspase-dependent or -independent intrinsic apoptosis, regulated necrosis, autophagic cell death and mitotic catastrophe. Moreover, we discuss the utility of expressions indicating additional cell death modalities. On the basis of the new, revised NCCD classification, cell death subroutines are defined by a series of precise, measurable biochemical features.

In 2009, the Nomenclature Committee on Cell Death (NCCD) proposed a set of recommendations for the definition of distinct cell death morphologies and for the appropriate use of cell death-related terminology, including 'apoptosis', 'necrosis' and 'mitotic catastrophe'. In view of the substantial progress in the biochemical and genetic exploration of cell death, time has come to switch from morphological to molecular definitions of cell death modalities. Here we propose a functional classification of cell death subroutines that applies to both in vitro and in vivo settings and includes extrinsic apoptosis, caspase-dependent or -independent intrinsic apoptosis, regulated necrosis, autophagic cell death and mitotic catastrophe. Moreover, we discuss the utility of expressions indicating additional cell death modalities. On the basis of the new, revised NCCD classification, cell death subroutines are defined by a series of precise, measurable biochemical features.

Citations

816 citations in Web of Science®
884 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 06 Sep 2011
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2012
Deposited On:06 Sep 2011 13:31
Last Modified:05 Apr 2016 14:59
Publisher:Nature Publishing Group
ISSN:1350-9047
Publisher DOI:10.1038/cdd.2011.96
PubMed ID:21760595
Permanent URL: http://doi.org/10.5167/uzh-49281

Download

[img]Content: Published Version
Language: English
Filetype: PDF - Registered users only
Size: 806kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations