UZH-Logo

Influence of high-fat feeding, diet-induced obesity, and hyperamylinemia on the sensitivity to acute amylin


Boyle, C N; Rossier, M M; Lutz, T A (2011). Influence of high-fat feeding, diet-induced obesity, and hyperamylinemia on the sensitivity to acute amylin. Physiology & Behavior, 104(1):20-28.

Abstract

Obesity results in the increased secretion of various hormones controlling food intake and body weight, such as leptin, and insulin; increased circulating levels of pancreatic amylin have also been described in obese humans and rodents. Because leptin-resistance is present in diet-induced obese (DIO) rats, and because hyperleptinemia seems necessary for the full development of leptin resistance, we tested whether amylin sensitivity is inversely correlated with adiposity, such that DIO reduces the anorectic action of acute amylin. We also determined if hyperamylinemia leads to a change in amylin sensitivity. In the first experiment, rats were chronically exposed to a high fat (HF; 60% fat) diet or fed standard chow for control. The anorectic response to amylin was tested on several occasions over a 14 week observation period. HF feeding led to the expected increase in body adiposity; the response to an acute amylin injection (5-50 μg/kg s.c.) was unaltered for 10 weeks of HF feeding. Even after 12 weeks on a HF diet, which clearly caused obesity, acute administration of amylin (5 μg/kg, s.c.) was still able to suppress food intake, although the suppression was not statistically significant. Further experiments using additional doses of amylin will be necessary to demonstrate possible amylin resistance after HF feeding or in DIO rats. In the second experiment, we tested more specifically whether hyperamylinemia that may result from HF feeding and subsequent obesity, reduces the sensitivity of the amylin signaling system. To avoid confounding factors, we chronically infused lean chow fed rats with amylin (5 or 10 μg/kg/day s.c.) to elevate their plasma amylin concentration to levels observed in obese rats (30-40 pM). In the absence of obesity, hyperamylinemia did not lead to a reduced sensitivity to acute amylin (5-20 μg/kg s.c.) injections; acute amylin reduced eating similarly in all groups of rats. Overall, we concluded that direct diet effects by short term exposure to HF appear to be of little importance for amylin sensitivity; further, long-term maintenance on a HF diet and the resulting obesity only slightly attenuated the anorectic response to acute amylin. Because we observed no marked changes in amylin sensitivity in lean, chow fed rats with induced hyperamylinemia, amylin receptor downregulation in chronic hyperamylinemia does not seem to occur.

Obesity results in the increased secretion of various hormones controlling food intake and body weight, such as leptin, and insulin; increased circulating levels of pancreatic amylin have also been described in obese humans and rodents. Because leptin-resistance is present in diet-induced obese (DIO) rats, and because hyperleptinemia seems necessary for the full development of leptin resistance, we tested whether amylin sensitivity is inversely correlated with adiposity, such that DIO reduces the anorectic action of acute amylin. We also determined if hyperamylinemia leads to a change in amylin sensitivity. In the first experiment, rats were chronically exposed to a high fat (HF; 60% fat) diet or fed standard chow for control. The anorectic response to amylin was tested on several occasions over a 14 week observation period. HF feeding led to the expected increase in body adiposity; the response to an acute amylin injection (5-50 μg/kg s.c.) was unaltered for 10 weeks of HF feeding. Even after 12 weeks on a HF diet, which clearly caused obesity, acute administration of amylin (5 μg/kg, s.c.) was still able to suppress food intake, although the suppression was not statistically significant. Further experiments using additional doses of amylin will be necessary to demonstrate possible amylin resistance after HF feeding or in DIO rats. In the second experiment, we tested more specifically whether hyperamylinemia that may result from HF feeding and subsequent obesity, reduces the sensitivity of the amylin signaling system. To avoid confounding factors, we chronically infused lean chow fed rats with amylin (5 or 10 μg/kg/day s.c.) to elevate their plasma amylin concentration to levels observed in obese rats (30-40 pM). In the absence of obesity, hyperamylinemia did not lead to a reduced sensitivity to acute amylin (5-20 μg/kg s.c.) injections; acute amylin reduced eating similarly in all groups of rats. Overall, we concluded that direct diet effects by short term exposure to HF appear to be of little importance for amylin sensitivity; further, long-term maintenance on a HF diet and the resulting obesity only slightly attenuated the anorectic response to acute amylin. Because we observed no marked changes in amylin sensitivity in lean, chow fed rats with induced hyperamylinemia, amylin receptor downregulation in chronic hyperamylinemia does not seem to occur.

Citations

17 citations in Web of Science®
18 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

74 downloads since deposited on 07 Sep 2011
12 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Integrative Human Physiology
05 Vetsuisse Faculty > Institute of Veterinary Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2011
Deposited On:07 Sep 2011 07:41
Last Modified:05 Apr 2016 14:59
Publisher:Elsevier
ISSN:0031-9384
Publisher DOI:10.1016/j.physbeh.2011.04.044
PubMed ID:21550355
Permanent URL: http://doi.org/10.5167/uzh-49293

Download

[img]
Preview
Content: Accepted Version
Language: English
Filetype: PDF
Size: 191kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations