UZH-Logo

Maintenance Infos

Role for glyoxalase I in Alzheimer's disease


Chen, F; Wollmer, M A; Hoerndli, F; Münch, G; Kuhla, B; Rogaev, E I; Tsolaki, M; Papassotiropoulos, A; Götz, J (2004). Role for glyoxalase I in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 101(20):7687-7692.

Abstract

P301L mutant tau transgenic mice develop neurofibrillary tangles, a histopathologic hallmark of Alzheimer's disease and frontotemporal dementia (FTDP-17). To identify differentially expressed genes and to gain insight into pathogenic mechanisms, we performed a stringent analysis of the microarray dataset obtained with RNA from whole brains of P301L mutant mice and identified a single up-regulated gene, glyoxalase I. This enzyme plays a critical role in the detoxification of dicarbonyl compounds and thereby reduces the formation of advanced glycation end products. In situ hybridization analysis revealed expression of glyoxalase I in all brain areas analyzed, both in transgenic and control mice. However, levels of glyoxalase I protein were significantly elevated in P301L brains, as shown by Western blot analysis and immunohistochemistry. Moreover, a glyoxalase I-specific antiserum revealed many intensely stained flame-shaped neurons in Alzheimer's disease brain compared with brains from nondemented controls. In addition, we examined a single nucleotide polymorphism predicting a nonconservative amino acid substitution at position 111 (E111A) in ethnically independent populations. We identified significant and consistent deviations from Hardy-Weinberg equilibrium, which points to the presence of selection forces. The E111A single nucleotide polymorphism was not associated with the risk for Alzheimer's disease in the overall population. Together, our data demonstrate the potential of transcriptomics applied to animal models of human diseases. They suggest a previously unidentified role for glyoxalase I in neurodegenerative disease.

P301L mutant tau transgenic mice develop neurofibrillary tangles, a histopathologic hallmark of Alzheimer's disease and frontotemporal dementia (FTDP-17). To identify differentially expressed genes and to gain insight into pathogenic mechanisms, we performed a stringent analysis of the microarray dataset obtained with RNA from whole brains of P301L mutant mice and identified a single up-regulated gene, glyoxalase I. This enzyme plays a critical role in the detoxification of dicarbonyl compounds and thereby reduces the formation of advanced glycation end products. In situ hybridization analysis revealed expression of glyoxalase I in all brain areas analyzed, both in transgenic and control mice. However, levels of glyoxalase I protein were significantly elevated in P301L brains, as shown by Western blot analysis and immunohistochemistry. Moreover, a glyoxalase I-specific antiserum revealed many intensely stained flame-shaped neurons in Alzheimer's disease brain compared with brains from nondemented controls. In addition, we examined a single nucleotide polymorphism predicting a nonconservative amino acid substitution at position 111 (E111A) in ethnically independent populations. We identified significant and consistent deviations from Hardy-Weinberg equilibrium, which points to the presence of selection forces. The E111A single nucleotide polymorphism was not associated with the risk for Alzheimer's disease in the overall population. Together, our data demonstrate the potential of transcriptomics applied to animal models of human diseases. They suggest a previously unidentified role for glyoxalase I in neurodegenerative disease.

Citations

104 citations in Web of Science®
113 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute for Regenerative Medicine (IREM)
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2004
Deposited On:02 Sep 2011 10:42
Last Modified:16 Aug 2016 10:14
Publisher:National Academy of Sciences
ISSN:0027-8424
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:10.1073/pnas.0402338101
PubMed ID:15128939

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations