UZH-Logo

Maintenance Infos

The effect of assortative mating on the coexistence of a hybridogenetic waterfrog and its sexual host


Som, C; Anholt, B R; Reyer, H U (2000). The effect of assortative mating on the coexistence of a hybridogenetic waterfrog and its sexual host. American Naturalist, 156(1):34-46.

Abstract

In central Europe, the hybridogenetic waterfrog Rana esculenta, a hybrid between Rana ridibunda and Rana lessonae, lives in sympatry with one of its parental species, the poolfrog Rana lessonae. As R. esculenta has to backcross constantly with R. lessonae in order to produce viable offspring, this coexistence is obligatory for R. esculenta. Since R. esculenta has a higher primary fitness than R. lessonae, a mechanism is required that prevents the hybrid from driving the parental species, and hence itself, to extinction. Here, we present an analytical model and a computer simulation that investigate whether assortative mating can operate as a such a control mechanism. Our results show that assortative mating is very effective in regulating coexistence in such a hybrid-host system. This is particularly true when choice is affected by the proportion of the two male types in the population. Furthermore, we could show that even if the species composition in a mixed hybrid-host population may be largely influenced by differences in life-history parameters, assortative mating still plays a very important role by stabilizing coexistence. Thus, mating behavior turns out to be more important for the populations dynamics of hybridogenetic waterfrog systems than previously assumed.

In central Europe, the hybridogenetic waterfrog Rana esculenta, a hybrid between Rana ridibunda and Rana lessonae, lives in sympatry with one of its parental species, the poolfrog Rana lessonae. As R. esculenta has to backcross constantly with R. lessonae in order to produce viable offspring, this coexistence is obligatory for R. esculenta. Since R. esculenta has a higher primary fitness than R. lessonae, a mechanism is required that prevents the hybrid from driving the parental species, and hence itself, to extinction. Here, we present an analytical model and a computer simulation that investigate whether assortative mating can operate as a such a control mechanism. Our results show that assortative mating is very effective in regulating coexistence in such a hybrid-host system. This is particularly true when choice is affected by the proportion of the two male types in the population. Furthermore, we could show that even if the species composition in a mixed hybrid-host population may be largely influenced by differences in life-history parameters, assortative mating still plays a very important role by stabilizing coexistence. Thus, mating behavior turns out to be more important for the populations dynamics of hybridogenetic waterfrog systems than previously assumed.

Citations

42 citations in Web of Science®
45 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

43 downloads since deposited on 11 Feb 2008
10 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:2000
Deposited On:11 Feb 2008 12:15
Last Modified:05 Apr 2016 12:14
Publisher:University of Chicago Press
ISSN:0003-0147
Additional Information:©2000 by American Naturalist
Publisher DOI:10.1086/303372
Related URLs:http://www.journals.uchicago.edu/AN/journal/issues/v156n1/990250/brief/990250.abstract.html
Permanent URL: http://doi.org/10.5167/uzh-495

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 544kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations