UZH-Logo

Rho regulates membrane transport in the endocytic pathway to control plasma membrane specialization in oligodendroglial cells


Kippert, A; Trajkovic, K; Rajendran, L; Ries, J; Simons, M (2007). Rho regulates membrane transport in the endocytic pathway to control plasma membrane specialization in oligodendroglial cells. Journal of Neuroscience, 27(13):3560-3570.

Abstract

Differentiation of oligodendrocytes is associated with dramatic changes in plasma membrane structure, culminating in the formation of myelin membrane sheaths. Previous results have provided evidence that regulation of endocytosis may represent a mechanism to control myelin membrane growth. Immature oligodendrocytes have a high rate of clathrin-independent endocytosis for the transport of membrane to late endosomes/lysosomes (LE/Ls). After maturation and receiving signals from neurons, endocytosis is reduced and transport of membrane from LE/Ls to the plasma membrane is triggered. Here, we show that changes in Rho GTPase activity are responsible for switching between these two modes of membrane transport. Strikingly, Rho inactivation did not only reduce the transport of cargo to LE/L but also increased the dynamics of LE/L vesicles. Furthermore, we provide evidence that Rho inactivation results in the condensation of the plasma membrane in a polarized manner. In summary, our data reveal a novel role of Rho: to regulate the flow of membrane and to promote changes in cell surface structure and polarity in oligodendroglial cells. We suggest that Rho inactivation is required to trigger plasma membrane specialization in oligodendrocytes.

Differentiation of oligodendrocytes is associated with dramatic changes in plasma membrane structure, culminating in the formation of myelin membrane sheaths. Previous results have provided evidence that regulation of endocytosis may represent a mechanism to control myelin membrane growth. Immature oligodendrocytes have a high rate of clathrin-independent endocytosis for the transport of membrane to late endosomes/lysosomes (LE/Ls). After maturation and receiving signals from neurons, endocytosis is reduced and transport of membrane from LE/Ls to the plasma membrane is triggered. Here, we show that changes in Rho GTPase activity are responsible for switching between these two modes of membrane transport. Strikingly, Rho inactivation did not only reduce the transport of cargo to LE/L but also increased the dynamics of LE/L vesicles. Furthermore, we provide evidence that Rho inactivation results in the condensation of the plasma membrane in a polarized manner. In summary, our data reveal a novel role of Rho: to regulate the flow of membrane and to promote changes in cell surface structure and polarity in oligodendroglial cells. We suggest that Rho inactivation is required to trigger plasma membrane specialization in oligodendrocytes.

Citations

31 citations in Web of Science®
34 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

118 downloads since deposited on 09 Sep 2011
27 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Psychiatric University Hospital Zurich > Division of Psychiatric Research and Clinic for Psychogeriatric Medicine
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2007
Deposited On:09 Sep 2011 14:38
Last Modified:05 Apr 2016 15:00
Publisher:Society for Neuroscience
ISSN:0270-6474
Publisher DOI:10.1523/JNEUROSCI.4926-06.2007
PubMed ID:17392472
Permanent URL: http://doi.org/10.5167/uzh-49540

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations