UZH-Logo

Maintenance Infos

Differences in DNA condensation and release by lysine and arginine homopeptides govern their DNA delivery efficiencies


Mann, A; Thakur, G; Shukla, V; Singh, A K; Khanduri, R; Naik, R; Jiang, Y; Kalra, N; Dwarakanath, B S; Langel, U; Ganguli, M (2011). Differences in DNA condensation and release by lysine and arginine homopeptides govern their DNA delivery efficiencies. Molecular Pharmaceutics, 5(8):1729-1741.

Abstract

Designing of nanocarriers that can efficiently deliver therapeutic DNA payload and allow its smooth intracellular release for transgene expression is still a major constraint. The optimization of DNA nanocarriers requires thorough understanding of the chemical and structural characteristics of the vector-nucleic acid complexes and its correlation with the cellular entry, intracellular state and transfection efficiency. l-Lysine and l-arginine based cationic peptides alone or in conjugation with other vectors are known to be putative DNA delivery agents. Here we have used l-lysine and l-arginine homopeptides of three different lengths and probed their DNA condensation and release properties by using a multitude of biophysical techniques including fluorescence spectroscopy, gel electrophoresis and atomic force microscopy. Our results clearly showed that although both lysine and arginine based homopeptides condense DNA via electrostatic interactions, they follow different pattern of DNA condensation and release in vitro. While lysine homopeptides condense DNA to form both monomolecular and multimolecular complexes and show differential release of DNA in vitro depending on the peptide length, arginine homopeptides predominantly form multimolecular complexes and show complete DNA release for all peptide lengths. The cellular uptake of the complexes and their intracellular state (as observed through flow cytometry and fluorescence microscopy) seem to be controlled by the peptide chemistry. The difference in the transfection efficiency of lysine and arginine homopeptides has been rationalized in light of these observations.

Designing of nanocarriers that can efficiently deliver therapeutic DNA payload and allow its smooth intracellular release for transgene expression is still a major constraint. The optimization of DNA nanocarriers requires thorough understanding of the chemical and structural characteristics of the vector-nucleic acid complexes and its correlation with the cellular entry, intracellular state and transfection efficiency. l-Lysine and l-arginine based cationic peptides alone or in conjugation with other vectors are known to be putative DNA delivery agents. Here we have used l-lysine and l-arginine homopeptides of three different lengths and probed their DNA condensation and release properties by using a multitude of biophysical techniques including fluorescence spectroscopy, gel electrophoresis and atomic force microscopy. Our results clearly showed that although both lysine and arginine based homopeptides condense DNA via electrostatic interactions, they follow different pattern of DNA condensation and release in vitro. While lysine homopeptides condense DNA to form both monomolecular and multimolecular complexes and show differential release of DNA in vitro depending on the peptide length, arginine homopeptides predominantly form multimolecular complexes and show complete DNA release for all peptide lengths. The cellular uptake of the complexes and their intracellular state (as observed through flow cytometry and fluorescence microscopy) seem to be controlled by the peptide chemistry. The difference in the transfection efficiency of lysine and arginine homopeptides has been rationalized in light of these observations.

Citations

33 citations in Web of Science®
34 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute for Regenerative Medicine (IREM)
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2011
Deposited On:08 Mar 2012 13:43
Last Modified:16 Aug 2016 10:13
Publisher:American Chemical Society
ISSN:1543-8384
Publisher DOI:https://doi.org/10.1021/mp2000814
PubMed ID:21780847

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations