UZH-Logo

Maintenance Infos

Amyloid precursor protein 695 associates with assembled NR2A- and NR2B-containing NMDA receptors to result in the enhancement of their cell surface delivery


Cousins, S L; Hoey, S E A; Anne Stephenson, F; Perkinton, M S (2009). Amyloid precursor protein 695 associates with assembled NR2A- and NR2B-containing NMDA receptors to result in the enhancement of their cell surface delivery. Journal of Neurochemistry, 111(6):1501-1513.

Abstract

This is a study of the interaction between the two NMDA neurotransmitter receptor subtypes, NR1/NR2A and NR1/NR2B, and amyloid precursor protein (APP) 695, the major APP variant expressed in neurones. APP695 co-immunoprecipitated with assembled NR1-1a/NR2A and NR1-1a/NR2B NMDA receptors following expression in mammalian cells. Single NR1-1a, NR1-2a, NR1-4b(c-Myc), or NR2 subunit transfections revealed that co-association of APP695 with assembled NMDA receptors was mediated via the NR1 subunit; it was independent of the NR1 C1, C2, and C2' cassettes and, the use of an NR1-2a(c-Myc)-trafficking mutant suggested that interaction between the two proteins occurs in the endoplasmic reticulum. The use of antibodies directed against extracellular and intracellular NR2 subunit epitopes for immunoprecipitations suggested that APP/NMDA receptor association was mediated via N-terminal domains. Anti-APP antibodies immunoprecipitated NR1, NR2A, and NR2B immunoreactive bands from detergent extracts of mammalian brain; reciprocally, anti-NR1 or anti-NR2A antibodies co-immunoprecipitated APP immunoreactivity. Immune pellets from brain were sensitive to endoglycosidase H suggesting that, as for heterologous expression, APP and NMDA receptor association occurs in the endoplasmic reticulum. Co-expression of APP695 in mammalian cells resulted in enhanced cell surface expression of both NR1-1a/NR2A and NR1-1a/NR2B NMDA receptors with no increase in total subunit expression. These findings are further evidence for a role of APP in intracellular trafficking mechanisms. Further, they provide a link between two major brain proteins that have both been implicated in Alzheimer's disease.

This is a study of the interaction between the two NMDA neurotransmitter receptor subtypes, NR1/NR2A and NR1/NR2B, and amyloid precursor protein (APP) 695, the major APP variant expressed in neurones. APP695 co-immunoprecipitated with assembled NR1-1a/NR2A and NR1-1a/NR2B NMDA receptors following expression in mammalian cells. Single NR1-1a, NR1-2a, NR1-4b(c-Myc), or NR2 subunit transfections revealed that co-association of APP695 with assembled NMDA receptors was mediated via the NR1 subunit; it was independent of the NR1 C1, C2, and C2' cassettes and, the use of an NR1-2a(c-Myc)-trafficking mutant suggested that interaction between the two proteins occurs in the endoplasmic reticulum. The use of antibodies directed against extracellular and intracellular NR2 subunit epitopes for immunoprecipitations suggested that APP/NMDA receptor association was mediated via N-terminal domains. Anti-APP antibodies immunoprecipitated NR1, NR2A, and NR2B immunoreactive bands from detergent extracts of mammalian brain; reciprocally, anti-NR1 or anti-NR2A antibodies co-immunoprecipitated APP immunoreactivity. Immune pellets from brain were sensitive to endoglycosidase H suggesting that, as for heterologous expression, APP and NMDA receptor association occurs in the endoplasmic reticulum. Co-expression of APP695 in mammalian cells resulted in enhanced cell surface expression of both NR1-1a/NR2A and NR1-1a/NR2B NMDA receptors with no increase in total subunit expression. These findings are further evidence for a role of APP in intracellular trafficking mechanisms. Further, they provide a link between two major brain proteins that have both been implicated in Alzheimer's disease.

Citations

27 citations in Web of Science®
30 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute for Regenerative Medicine (IREM)
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2009
Deposited On:13 Sep 2011 11:11
Last Modified:16 Aug 2016 10:13
Publisher:Wiley-Blackwell
ISSN:0022-3042
Publisher DOI:https://doi.org/10.1111/j.1471-4159.2009.06424.x
PubMed ID:19811606

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations