UZH-Logo

Maintenance Infos

Gizzard vs. teeth, it’s a tie: food-processing efficiency in herbivorous birds and mammals and implications for dinosaur feeding strategies


Fritz, J; Hummel, J; Kienzle, E; Wings, O; Streich, W J; Clauss, Marcus (2011). Gizzard vs. teeth, it’s a tie: food-processing efficiency in herbivorous birds and mammals and implications for dinosaur feeding strategies. Paleobiology, 37(4):577-586.

Abstract

Particle size reduction is a primary means of improving efficiency in herbivores. The mode of food particle size reduction is one of the main differences between herbivorous birds (gizzard) and mammals (teeth). For a quantitative comparison of the efficiency of food comminution, we investigated mean fecal particle sizes (MPS) in 14 herbivorous bird species and compared these with a data set of 111 non-ruminant herbivorous mammal species. In general MPS increased with body mass, but there was no significant difference between birds and mammals, suggesting a comparable efficiency of food processing by gizzards and chewing teeth. The results lead to the intriguing question of why gizzard systems have evolved comparatively rarely among amniote herbivores. Advantages linked to one of the two food comminution systems must, however, be sought in different effects other than size reduction itself. In paleoecological scenarios, the evolution of ‘‘dental batteries,’’ for example in ornithopod dinosaurs, should be considered an advantage compared to absence of mastication, but not compared to gizzard-based herbivory.

Particle size reduction is a primary means of improving efficiency in herbivores. The mode of food particle size reduction is one of the main differences between herbivorous birds (gizzard) and mammals (teeth). For a quantitative comparison of the efficiency of food comminution, we investigated mean fecal particle sizes (MPS) in 14 herbivorous bird species and compared these with a data set of 111 non-ruminant herbivorous mammal species. In general MPS increased with body mass, but there was no significant difference between birds and mammals, suggesting a comparable efficiency of food processing by gizzards and chewing teeth. The results lead to the intriguing question of why gizzard systems have evolved comparatively rarely among amniote herbivores. Advantages linked to one of the two food comminution systems must, however, be sought in different effects other than size reduction itself. In paleoecological scenarios, the evolution of ‘‘dental batteries,’’ for example in ornithopod dinosaurs, should be considered an advantage compared to absence of mastication, but not compared to gizzard-based herbivory.

Citations

15 citations in Web of Science®
15 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

193 downloads since deposited on 19 Sep 2011
24 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Veterinary Clinic > Department of Small Animals
Dewey Decimal Classification:570 Life sciences; biology
630 Agriculture
Language:English
Date:2011
Deposited On:19 Sep 2011 11:04
Last Modified:11 Sep 2016 07:40
Publisher:Paleontological Society
ISSN:0094-8373
Publisher DOI:https://doi.org/10.1666/10031.1
Permanent URL: https://doi.org/10.5167/uzh-49678

Download

[img]
Content: Published Version
Language: English
Filetype: PDF - Registered users only
Size: 291kB
View at publisher
[img]
Preview
Content: Accepted Version
Language: English
Filetype: PDF
Size: 189kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations