UZH-Logo

Maintenance Infos

Altered levels of PP2A regulatory B/PR55 isoforms indicate role in neuronal differentiation


Schild, A; Schmidt, K; Lim, Y-A; Ke, Y; Ittner, L M; Hemmings, B A; Götz, J (2006). Altered levels of PP2A regulatory B/PR55 isoforms indicate role in neuronal differentiation. International Journal of Developmental Neuroscience, 24(7):437-443.

Abstract

The ubiquitously expressed serine/threonine-specific protein phosphatase 2A (PP2A) is prominent in brain where it serves a wide range of functions under both physiological and pathological conditions. PP2A holoenzymes are composed of a catalytic subunit and a tightly complexed scaffolding subunit. This core enzyme associates with regulatory subunits of the B/PR55, B'/PR56/PR61, B''/PR72 and B'''/PR93/PR110 families. We previously determined distribution and expression levels of the four members of the B/PR55 family in brain, as dysregulation of this subunit family has been specifically implicated in neurodegenerative disorders including Alzheimer's disease. In the present study, we used cell lines widely used in neuroscience research to determine levels of the four PR55 isoforms by qRT-PCR under different experimental conditions. We show that PR55alpha mRNA levels are highest in both HEK293 cells and SH-SY5Y neuroblastoma cells whereas PR55beta levels are lowest. Stepwise neuronal differentiation of SH-SY5Y cells causes the selective upregulation of PR55beta, and to some extent PR55gamma and PR55delta, but not PR55alpha mRNAs. In agreement with the qRT-PCR analysis, neuronal differentiation does not alter PR55alpha protein levels, whereas interestingly, PR55beta and PR55gamma protein levels are reduced when compared to undifferentiated cells. Our data point at specific roles for distinct regulatory B/PR55 subunits of PP2A in neuron-like cells with PR55alpha being the major isoform.

The ubiquitously expressed serine/threonine-specific protein phosphatase 2A (PP2A) is prominent in brain where it serves a wide range of functions under both physiological and pathological conditions. PP2A holoenzymes are composed of a catalytic subunit and a tightly complexed scaffolding subunit. This core enzyme associates with regulatory subunits of the B/PR55, B'/PR56/PR61, B''/PR72 and B'''/PR93/PR110 families. We previously determined distribution and expression levels of the four members of the B/PR55 family in brain, as dysregulation of this subunit family has been specifically implicated in neurodegenerative disorders including Alzheimer's disease. In the present study, we used cell lines widely used in neuroscience research to determine levels of the four PR55 isoforms by qRT-PCR under different experimental conditions. We show that PR55alpha mRNA levels are highest in both HEK293 cells and SH-SY5Y neuroblastoma cells whereas PR55beta levels are lowest. Stepwise neuronal differentiation of SH-SY5Y cells causes the selective upregulation of PR55beta, and to some extent PR55gamma and PR55delta, but not PR55alpha mRNAs. In agreement with the qRT-PCR analysis, neuronal differentiation does not alter PR55alpha protein levels, whereas interestingly, PR55beta and PR55gamma protein levels are reduced when compared to undifferentiated cells. Our data point at specific roles for distinct regulatory B/PR55 subunits of PP2A in neuron-like cells with PR55alpha being the major isoform.

Citations

12 citations in Web of Science®
9 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute for Regenerative Medicine (IREM)
Dewey Decimal Classification:610 Medicine & health
Date:2006
Deposited On:12 Oct 2011 12:57
Last Modified:16 Aug 2016 10:14
Publisher:Elsevier
ISSN:0736-5748
Publisher DOI:https://doi.org/10.1016/j.ijdevneu.2006.08.005
PubMed ID:17045446

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations