UZH-Logo

Maintenance Infos

Effective connectivity during processing of facial affect: Evidence for multiple parallel pathways


Dima, Danai; Stephan, Klaas E; Roiser, Jonathan P; Friston, Karl J; Frangou, Sophia (2011). Effective connectivity during processing of facial affect: Evidence for multiple parallel pathways. Journal of Neuroscience, 31(40):14378-14385.

Abstract

The perception of facial affect engages a distributed cortical network. We used functional magnetic resonance imaging and dynamic causal modeling to characterize effective connectivity during explicit (conscious) categorization of affective stimuli in the human brain. Specifically, we examined the modulation of connectivity from posterior regions of the face-processing network to the lateral ventral prefrontal cortex (VPFC) during affective categorization and we tested for a potential role of the amygdala (AMG) in mediating this modulation. We found that explicit processing of facial affect led to prominent modulation (increase) in the effective connectivity from the inferior occipital gyrus (IOG) to the VPFC, while there was less evidence for modulation of the afferent connections from fusiform gyrus and AMG to VPFC. More specifically, the forward connection from IOG to the VPFC exhibited a selective increase under anger (as opposed to fear or sadness). Furthermore, Bayesian model comparison suggested that the modulation of afferent connections to the VPFC was mediated directly by facial affect, as opposed to an indirect modulation mediated by the AMG. Our results thus suggest that affective information is conveyed to the VPFC along multiple parallel pathways and that AMG activity is not sufficient to account for the gating of information transfer to the VPFC during explicit emotional processing.

The perception of facial affect engages a distributed cortical network. We used functional magnetic resonance imaging and dynamic causal modeling to characterize effective connectivity during explicit (conscious) categorization of affective stimuli in the human brain. Specifically, we examined the modulation of connectivity from posterior regions of the face-processing network to the lateral ventral prefrontal cortex (VPFC) during affective categorization and we tested for a potential role of the amygdala (AMG) in mediating this modulation. We found that explicit processing of facial affect led to prominent modulation (increase) in the effective connectivity from the inferior occipital gyrus (IOG) to the VPFC, while there was less evidence for modulation of the afferent connections from fusiform gyrus and AMG to VPFC. More specifically, the forward connection from IOG to the VPFC exhibited a selective increase under anger (as opposed to fear or sadness). Furthermore, Bayesian model comparison suggested that the modulation of afferent connections to the VPFC was mediated directly by facial affect, as opposed to an indirect modulation mediated by the AMG. Our results thus suggest that affective information is conveyed to the VPFC along multiple parallel pathways and that AMG activity is not sufficient to account for the gating of information transfer to the VPFC during explicit emotional processing.

Citations

37 citations in Web of Science®
38 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

109 downloads since deposited on 18 Oct 2011
40 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Economics
Special Collections > SystemsX.ch
Special Collections > SystemsX.ch > Research, Technology and Development Projects > Neurochoice
08 University Research Priority Programs > Foundations of Human Social Behavior: Altruism and Egoism
Dewey Decimal Classification:570 Life sciences; biology
170 Ethics
330 Economics
Language:English
Date:2011
Deposited On:18 Oct 2011 11:26
Last Modified:05 Apr 2016 15:02
Publisher:Society for Neuroscience
ISSN:0270-6474
Publisher DOI:10.1523/JNEUROSCI.2400-11.2011
PubMed ID:21976523
Permanent URL: http://doi.org/10.5167/uzh-49929

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 709kB
View at publisher
[img]
Preview
Content: Published Version
Filetype: PDF
Size: 1MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations