Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, 5.7.2016, 07:00-08:00

Maintenance work on ZORA and JDB on Tuesday, 5th July, 07h00-08h00. During this time there will be a brief unavailability for about 1 hour. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-49976

Yévenes, G E; Zeilhofer, H U (2011). Molecular sites for the positive allosteric modulation of glycine receptors by endocannabinoids. PLoS ONE, 6(8):e23886.

Published Version
View at publisher


Glycine receptors (GlyRs) are transmitter-gated anion channels of the Cys-loop superfamily which mediate synaptic inhibition at spinal and selected supraspinal sites. Although they serve pivotal functions in motor control and sensory processing, they have yet to be exploited as drug targets partly because of hitherto limited possibilities for allosteric control. Endocannabinoids (ECs) have recently been characterized as direct allosteric GlyR modulators, but the underlying molecular sites have remained unknown. Here, we show that chemically neutral ECs (e.g. anandamide, AEA) are positive modulators of α(1), α(2) and α(3) GlyRs, whereas acidic ECs (e.g. N-arachidonoyl-glycine; NA-Gly) potentiate α(1) GlyRs but inhibit α(2) and α(3). This subunit-specificity allowed us to identify the underlying molecular sites through analysis of chimeric and mutant receptors. We found that alanine 52 in extracellular loop 2, glycine 254 in transmembrane (TM) region 2 and intracellular lysine 385 determine the positive modulation of α(1) GlyRs by NA-Gly. Successive substitution of non-conserved extracellular and TM residues in α(2) converted NA-Gly-mediated inhibition into potentiation. Conversely, mutation of the conserved lysine within the intracellular loop between TM3 and TM4 attenuated NA-Gly-mediated potentiation of α(1) GlyRs, without affecting inhibition of α(2) and α(3). Notably, this mutation reduced modulation by AEA of all three GlyRs. These results define molecular sites for allosteric control of GlyRs by ECs and reveal an unrecognized function for the TM3-4 intracellular loop in the allosteric modulation of Cys-loop ion channels. The identification of these sites may help to understand the physiological role of this modulation and facilitate the development of novel therapeutic approaches to diseases such as spasticity, startle disease and possibly chronic pain.


15 citations in Web of Science®
19 citations in Scopus®
Google Scholar™



48 downloads since deposited on 12 Oct 2011
13 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Deposited On:12 Oct 2011 11:55
Last Modified:05 Apr 2016 15:02
Publisher:Public Library of Science (PLoS)
Funders:Forschungskredit of the University of Zurich, Schweizerischer National Fonds (3100A0-116064/1 and 31003A-131093/1)
Publisher DOI:10.1371/journal.pone.0023886
PubMed ID:21901142

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page