UZH-Logo

Maintenance Infos

Rapid and reversible formation of spine head filopodia in response to muscarinic receptor activation in CA1 pyramidal cells


Schätzle, P; Ster, J; Verbich, D; McKinney, R A; Gerber, U; Sonderegger, P; María Mateos, J (2011). Rapid and reversible formation of spine head filopodia in response to muscarinic receptor activation in CA1 pyramidal cells. Journal of Physiology, 589(17):4353-4364.

Abstract

A key feature at excitatory synapses is the remodelling of dendritic spines, which in conjunction with receptor trafficking modifies the efficacy of neurotransmission. Here we investigated whether activation of cholinergic receptors, which can modulate synaptic plasticity, also mediates changes in dendritic spine structure. Using confocal time-lapse microscopy in mouse slice cultures we found that brief activation of muscarinic receptors induced the emergence of fine filopodia from spine heads in all CA1 pyramidal cells examined. This response was widespread occurring in 48% of imaged spines, appeared within minutes, was reversible, and was blocked by atropine. Electron microscopic analyses showed that the spine head filopodia (SHFs) extend along the presynaptic bouton. In addition, the decay time of miniature EPSCs was longer after application of the muscarinic acetylcholine receptor agonist methacholine (MCh). Both morphological and electrophysiological changes were reduced by preventing microtubule polymerization with nocodazole. This extension of SHFs during cholinergic receptor activation represents a novel structural form of subspine plasticity that may regulate synaptic properties by fine-tuning interactions between presynaptic boutons and dendritic spines.

A key feature at excitatory synapses is the remodelling of dendritic spines, which in conjunction with receptor trafficking modifies the efficacy of neurotransmission. Here we investigated whether activation of cholinergic receptors, which can modulate synaptic plasticity, also mediates changes in dendritic spine structure. Using confocal time-lapse microscopy in mouse slice cultures we found that brief activation of muscarinic receptors induced the emergence of fine filopodia from spine heads in all CA1 pyramidal cells examined. This response was widespread occurring in 48% of imaged spines, appeared within minutes, was reversible, and was blocked by atropine. Electron microscopic analyses showed that the spine head filopodia (SHFs) extend along the presynaptic bouton. In addition, the decay time of miniature EPSCs was longer after application of the muscarinic acetylcholine receptor agonist methacholine (MCh). Both morphological and electrophysiological changes were reduced by preventing microtubule polymerization with nocodazole. This extension of SHFs during cholinergic receptor activation represents a novel structural form of subspine plasticity that may regulate synaptic properties by fine-tuning interactions between presynaptic boutons and dendritic spines.

Citations

4 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

32 downloads since deposited on 12 Oct 2011
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2011
Deposited On:12 Oct 2011 14:56
Last Modified:05 Apr 2016 15:02
Publisher:Wiley-Blackwell
ISSN:0022-3751
Publisher DOI:https://doi.org/10.1113/jphysiol.2010.204446
PubMed ID:21768266
Permanent URL: https://doi.org/10.5167/uzh-50007

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 666kB
View at publisher
[img]
Content: Supplemental Material
Filetype: MS Word
Size: 22kB
[img]
Preview
Content: Supplemental Material
Filetype: PDF (Figure 1)
Size: 133kB
[img]
Content: Supplemental Material
Filetype: Video (QuickTime) (Movie 1)
Size: 4MB
[img]
Content: Supplemental Material
Filetype: Video (QuickTime) (Video 2)
Size: 2MB
[img]
Content: Supplemental Material
Filetype: Video (QuickTime) (Video 3)
Size: 703kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations