UZH-Logo

Maintenance Infos

New vertebral and rib material point to modern bauplan of the Nariokotome Homo erectus skeleton


Häusler, Martin; Schiess, Regula; Böni, Thomas (2011). New vertebral and rib material point to modern bauplan of the Nariokotome Homo erectus skeleton. Journal of Human Evolution, 61(5):575-582.

Abstract

The double S shape of the vertebral column is one of the most important evolutionary adaptations to human bipedal locomotion, providing an optimal compromise between stability and mobility. It is commonly believed that a six element long lumbar spine facilitated the critical adoption of lumbar lordosis in early hominins, which contrasts with five lumbars in modern humans and four in chimpanzees and gorillas. This is mainly based on the juvenile Homo erectus skeleton KNM-WT 15000 from Nariokotome, Kenya. Yet, the biomechanical advantage of a long lumbar spine is speculative. Here we present new vertebral and rib fragments of KNM-WT 15000. They demonstrate that the sixth to the last presacral vertebra possesses rib facets and therefore indicate the presence of only five lumbar and twelve thoracic segments, as is characteristic of modern humans. Moreover, they show that no additional element was located between the sixth to the last presacral vertebra and Th11 as suggested in the original description. The transition from thoracic to lumbar type orientation of the facet joints that takes place at Th11 is thus at the same segment as in over 40% of modern humans, suggesting an identical lumbar mobility and capacity for lordosis. Taken together, KNM-WT 15000 had one vertebra less than previously thought irrespective of whether rib-free lumbar vertebrae or vertebrae that bear lumbar-like articular processes are counted. Furthermore, the new rib fragments imply a rearrangement of the ribs that results in a symmetrical rib cage. This challenges previous claims for idiopathic or congenital scoliosis. We conclude that the bauplan of the hominin axial skeleton is more conservative than previously thought.

The double S shape of the vertebral column is one of the most important evolutionary adaptations to human bipedal locomotion, providing an optimal compromise between stability and mobility. It is commonly believed that a six element long lumbar spine facilitated the critical adoption of lumbar lordosis in early hominins, which contrasts with five lumbars in modern humans and four in chimpanzees and gorillas. This is mainly based on the juvenile Homo erectus skeleton KNM-WT 15000 from Nariokotome, Kenya. Yet, the biomechanical advantage of a long lumbar spine is speculative. Here we present new vertebral and rib fragments of KNM-WT 15000. They demonstrate that the sixth to the last presacral vertebra possesses rib facets and therefore indicate the presence of only five lumbar and twelve thoracic segments, as is characteristic of modern humans. Moreover, they show that no additional element was located between the sixth to the last presacral vertebra and Th11 as suggested in the original description. The transition from thoracic to lumbar type orientation of the facet joints that takes place at Th11 is thus at the same segment as in over 40% of modern humans, suggesting an identical lumbar mobility and capacity for lordosis. Taken together, KNM-WT 15000 had one vertebra less than previously thought irrespective of whether rib-free lumbar vertebrae or vertebrae that bear lumbar-like articular processes are counted. Furthermore, the new rib fragments imply a rearrangement of the ribs that results in a symmetrical rib cage. This challenges previous claims for idiopathic or congenital scoliosis. We conclude that the bauplan of the hominin axial skeleton is more conservative than previously thought.

Citations

23 citations in Web of Science®
28 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

313 downloads since deposited on 20 Oct 2011
49 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
07 Faculty of Science > Department of Anthropology
04 Faculty of Medicine > Institute of Evolutionary Medicine
04 Faculty of Medicine > Institute of Anatomy
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
300 Social sciences, sociology & anthropology
Language:English
Date:2011
Deposited On:20 Oct 2011 11:59
Last Modified:05 Apr 2016 15:02
Publisher:Elsevier
ISSN:0047-2484
Publisher DOI:https://doi.org/10.1016/j.jhevol.2011.07.004
PubMed ID:21868059
Permanent URL: https://doi.org/10.5167/uzh-50126

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 954kB
View at publisher
[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 4MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations