UZH-Logo

Maintenance Infos

Dorsal premotor cortex exerts state-dependent causal influences on activity in contralateral primary motor and dorsal premotor cortex


Bestmann, S; Swayne, O; Blankenburg, F; Ruff, Christian C; Haggard, P; Weiskopf, N; Josephs, O; Driver, J; Rothwell, J C; Ward, N S (2008). Dorsal premotor cortex exerts state-dependent causal influences on activity in contralateral primary motor and dorsal premotor cortex. Cerebral Cortex, 18(6):1281-1291.

Abstract

During voluntary action, dorsal premotor cortex (PMd) may exert influences on motor regions in both hemispheres, but such interregional interactions are not well understood. We used transcranial magnetic stimulation (TMS) concurrently with event-related functional magnetic resonance imaging to study such interactions directly. We tested whether causal influences from left PMd upon contralateral (right) motor areas depend on the current state of the motor system, involving regions engaged in a current task. We applied short bursts (360 ms) of high- or low-intensity TMS to left PMd during single isometric left-hand grips or during rest. TMS to left PMd affected activity in contralateral right PMd and primary motor cortex (M1) in a state-dependent manner. During active left-hand grip, high (vs. low)-intensity TMS led to activity increases in contralateral right PMd and M1, whereas activity decreases there due to TMS were observed during no-grip rest. Analyses of condition-dependent functional coupling confirmed topographically specific stronger coupling between left PMd and right PMd (and right M1), when high-intensity TMS was applied to left PMd during left-hand grip. We conclude that left PMd can exert state-dependent interhemispheric influences on contralateral cortical motor areas relevant for a current motor task.

During voluntary action, dorsal premotor cortex (PMd) may exert influences on motor regions in both hemispheres, but such interregional interactions are not well understood. We used transcranial magnetic stimulation (TMS) concurrently with event-related functional magnetic resonance imaging to study such interactions directly. We tested whether causal influences from left PMd upon contralateral (right) motor areas depend on the current state of the motor system, involving regions engaged in a current task. We applied short bursts (360 ms) of high- or low-intensity TMS to left PMd during single isometric left-hand grips or during rest. TMS to left PMd affected activity in contralateral right PMd and primary motor cortex (M1) in a state-dependent manner. During active left-hand grip, high (vs. low)-intensity TMS led to activity increases in contralateral right PMd and M1, whereas activity decreases there due to TMS were observed during no-grip rest. Analyses of condition-dependent functional coupling confirmed topographically specific stronger coupling between left PMd and right PMd (and right M1), when high-intensity TMS was applied to left PMd during left-hand grip. We conclude that left PMd can exert state-dependent interhemispheric influences on contralateral cortical motor areas relevant for a current motor task.

Citations

87 citations in Web of Science®
86 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

94 downloads since deposited on 25 Oct 2011
24 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Economics
08 University Research Priority Programs > Foundations of Human Social Behavior: Altruism and Egoism
Dewey Decimal Classification:170 Ethics
330 Economics
Language:English
Date:2008
Deposited On:25 Oct 2011 14:14
Last Modified:05 Apr 2016 15:03
Publisher:Oxford University Press
ISSN:1047-3211
Publisher DOI:https://doi.org/10.1093/cercor/bhm159
PubMed ID:17965128
Permanent URL: https://doi.org/10.5167/uzh-50210

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 445kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations