UZH-Logo

Maintenance Infos

Models of functional neuroimaging data


Stephan, K E; Mattout, J; David, O; Friston, K J (2006). Models of functional neuroimaging data. Current Medical Imaging Reviews, 2(1):15-34.

Abstract

Inferences about brain function, using functional neuroimaging data, require models of how the data were caused. A variety of models are used in practice that range from conceptual models of functional anatomy to nonlinear mathematical models of hemodynamic responses (e.g. as measured by functional magnetic resonance imaging, fMRI) and neuronal responses. In this review, we discuss the most important models used to analyse functional imaging data and demonstrate how they are interrelated. Initially, we briefly review the anatomical foundations of current theories of brain function on which all mathematical models rest. We then introduce some basic statistical models (e.g. the general linear model) used for making classical (i.e. frequentist) and Bayesian inferences about where neuronal responses are expressed. The more challenging question, how these responses are caused, is addressed by models that incorporate biophysical constraints (e.g. forward models from the neural to the hemodynamic level) and/or consider causal interactions between several regions, i.e. models of effective connectivity. Some of the most refined models to date are neuronal mass models of electroencephalographic (EEG) responses. These models enable mechanistic inferences about how evoked responses are caused, at the level of neuronal subpopulations and the coupling among them.

Abstract

Inferences about brain function, using functional neuroimaging data, require models of how the data were caused. A variety of models are used in practice that range from conceptual models of functional anatomy to nonlinear mathematical models of hemodynamic responses (e.g. as measured by functional magnetic resonance imaging, fMRI) and neuronal responses. In this review, we discuss the most important models used to analyse functional imaging data and demonstrate how they are interrelated. Initially, we briefly review the anatomical foundations of current theories of brain function on which all mathematical models rest. We then introduce some basic statistical models (e.g. the general linear model) used for making classical (i.e. frequentist) and Bayesian inferences about where neuronal responses are expressed. The more challenging question, how these responses are caused, is addressed by models that incorporate biophysical constraints (e.g. forward models from the neural to the hemodynamic level) and/or consider causal interactions between several regions, i.e. models of effective connectivity. Some of the most refined models to date are neuronal mass models of electroencephalographic (EEG) responses. These models enable mechanistic inferences about how evoked responses are caused, at the level of neuronal subpopulations and the coupling among them.

Citations

3 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

49 downloads since deposited on 31 Oct 2011
22 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:03 Faculty of Economics > Department of Economics
08 University Research Priority Programs > Foundations of Human Social Behavior: Altruism and Egoism
Dewey Decimal Classification:170 Ethics
330 Economics
Language:English
Date:2006
Deposited On:31 Oct 2011 11:50
Last Modified:05 Apr 2016 15:03
Publisher:Bentham Science
ISSN:1573-4056
Publisher DOI:https://doi.org/10.2174/157340506775541659
Official URL:http://www.benthamdirect.org/pages/content.php?CMIR/2006/00000002/00000001/D0003I.SGM
PubMed ID:20526410

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations