Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-50500

Eisele, G; Weller, M (2013). Targeting apoptosis pathways in glioblastoma. Cancer Letters, 332(2):335-345.

Accepted Version
View at publisher


The treatment of glioblastoma remains a major challenge for clinicians since these highly aggressive brain tumors are relatively resistant towards radio- and chemotherapy. The pathways that control apoptosis are altered in glioblastoma cells leading to resistance towards apoptotic stimuli in general. In this review we describe the alterations affecting the p53 pathway, the BCL-2 protein family, the inhibitor of apoptosis proteins and several growth factor pathways involved in the regulation of programmed cell death and define possible targets for new therapies within these apoptotic pathways in glioblastomas. Moreover, we review strategies to target death receptor pathways, most notably to render the glioblastoma cells more susceptible towards this approach without enhancing toxicity in general. Most of the strategies targeting apoptosis in glioblastomas presented here are in a pre-clinical stage of development, however, they all share the ultimative goal to improve the outcome for glioblastoma patients.


15 citations in Web of Science®
17 citations in Scopus®
Google Scholar™



41 downloads since deposited on 10 Nov 2011
13 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neurology
Dewey Decimal Classification:610 Medicine & health
Deposited On:10 Nov 2011 13:01
Last Modified:05 Apr 2016 15:04
Publisher DOI:10.1016/j.canlet.2010.12.012
PubMed ID:21269762

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page