UZH-Logo

Stem cell-mediated gene therapies for malignant gliomas: a promising targeted therapeutic approach?


Tabatabai, G; Wick, W; Weller, M (2011). Stem cell-mediated gene therapies for malignant gliomas: a promising targeted therapeutic approach? Discovery medicine, 11(61):529-536.

Abstract

Glioblastomas are aggressive intrinsic brain tumors. The median overall survival does not exceed 15 months despite surgical resection, radiotherapy, and chemotherapy even in selected clinical trial populations. One reason for this poor outcome is the characteristic infiltrative growth pattern of glioblastomas with tumor cells deeply infiltrating into the normal brain parenchyma and thereby escaping surgical debulking and involved-field radiation therapy. Novel therapeutic strategies are urgently needed including those that target disseminated tumor cells, too. In this regard, the application of adult stem cells as cellular vehicles for the delivery of therapeutic molecules has emerged during the last decade as an experimental approach. Adult stem cells with a tropism for gliomas include neural stem and progenitor cells, mesenchymal stem cells, hematopoietic progenitor cells, and endothelial progenitor cells. Importantly, these candidate cellular carriers also localize to sites of hypoxia and invasive tumor borders which are usually not targeted by currently available therapeutic approaches. Stem cell-based therapeutic approaches could therefore help to overcome some of the current limitations of radio- and chemotherapy and may circumvent toxicity to normal resident cells of the central nervous system. The development of neural stem- and progenitor-based therapies is advanced with a currently ongoing phase I clinical study. We review rationale, achievements, and future challenges in this field.

Glioblastomas are aggressive intrinsic brain tumors. The median overall survival does not exceed 15 months despite surgical resection, radiotherapy, and chemotherapy even in selected clinical trial populations. One reason for this poor outcome is the characteristic infiltrative growth pattern of glioblastomas with tumor cells deeply infiltrating into the normal brain parenchyma and thereby escaping surgical debulking and involved-field radiation therapy. Novel therapeutic strategies are urgently needed including those that target disseminated tumor cells, too. In this regard, the application of adult stem cells as cellular vehicles for the delivery of therapeutic molecules has emerged during the last decade as an experimental approach. Adult stem cells with a tropism for gliomas include neural stem and progenitor cells, mesenchymal stem cells, hematopoietic progenitor cells, and endothelial progenitor cells. Importantly, these candidate cellular carriers also localize to sites of hypoxia and invasive tumor borders which are usually not targeted by currently available therapeutic approaches. Stem cell-based therapeutic approaches could therefore help to overcome some of the current limitations of radio- and chemotherapy and may circumvent toxicity to normal resident cells of the central nervous system. The development of neural stem- and progenitor-based therapies is advanced with a currently ongoing phase I clinical study. We review rationale, achievements, and future challenges in this field.

Citations

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neurology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2011
Deposited On:09 Jan 2012 20:48
Last Modified:05 Apr 2016 15:04
Publisher:UNSPECIFIED
ISSN:1539-6509
Free access at:Official URL. An embargo period may apply.
Official URL:http://www.discoverymedicine.com/Ghazaleh-Tabatabai/2011/06/22/stem-cell-mediated-gene-therapies-for-malignant-gliomas-a-promising-targeted-therapeutic-approach/
PubMed ID:21712019

Download

Full text not available from this repository.

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations