Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-50659

Mishra, S; Caflisch, A (2011). Dynamics in the active site of β-Secretase: a network analysis of atomistic simulations. Biochemistry, 50(43):9328-9339.

[img]Published Version
PDF - Registered users only
5MB

Abstract

The aspartic protease β-secretase (BACE) catalyzes the hydrolysis of the amyloid precursor protein (APP) which leads to amyloid-β aggregation and, ultimately, the perilous Alzheimer's disease. The conformational dynamics and free energy surfaces of BACE at three steps of the catalytic cycle are studied here by explicit solvent molecular dynamics simulations (multiple runs for a total of 2.2 μs). The overall plasticity of BACE is essentially identical for the three states of the substrate: the octapeptide reactant, gem-diol intermediate, and cleavage products. In contrast, the network of hydrogen bonds in the active site is more stable in the complex of BACE with the gem-diol intermediate than the other two states of the substrate. The spontaneous release of the C-terminal (P1'-P4') fragment of the product follows a single-exponential time dependence with a time constant of 50 ns and does not require the opening of the flap. The fast dissociation of the C-terminal fragment is consistent with the transmembrane location and orientation of APP and its further processing by γ-secretase. On the other hand, the N-terminal (P4-P1) fragment of the product does not exit the BACE active site within the simulation time scale of 80 ns. A unified network analysis of the complexes of BACE with the three states of the substrate provides an estimation of the activation free energy associated with the structural rearrangements that involve only noncovalent interactions. The estimated rearrangement barriers are not negligible (up to 3 kcal/mol) but are significantly smaller than the barrier of the peptide bond hydrolysis reaction.

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
DDC:570 Life sciences; biology
Date:2011
Deposited On:04 Nov 2011 07:19
Last Modified:29 Dec 2013 11:05
Publisher:American Chemical Society
ISSN:0006-2960
Publisher DOI:10.1021/bi2011948
PubMed ID:21942621
Citations:Web of Science®. Times Cited: 10
Google Scholar™
Scopus®. Citation Count: 9

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page