UZH-Logo

Maintenance Infos

In vitro modeling of the blood-brain barrier: Simplicity versus complexity


Ogunshola, O O (2011). In vitro modeling of the blood-brain barrier: Simplicity versus complexity. Current Pharmaceutical Design, 17(26):2755-2761.

Abstract

Proper understanding of blood-brain barrier (BBB) regulation is crucial to reduce/prevent its disruption during injury. Since high brain complexity makes interpretation of in vivo data challenging BBB studies are frequently performed using simplified in vitro models. Although such models represent an important and frequently employed alternative for investigation of BBB function and alterations, our ability to translate in vitro findings to in vivo situation remains sub-optimal. Consequently, despite the fact that our knowledge of the cellular and molecular mechanisms underlying BBB physiology and pathophysiology is constantly increasing, our ability to modulate barrier function remains virtually non-existent. Classical in vitro model systems have provided a wealth of knowledge until now, but it is now evident that newer in vitro models that are more representative of the in vivo situation are needed to further our understanding of barrier physiology. This paper will provide an overview of the BBB cellular components and the most frequently used in vitro BBB model systems. I will discuss their advantages and disadvantages, as well as highlight recently developed models that more closely mimic the BBB in vivo.

Proper understanding of blood-brain barrier (BBB) regulation is crucial to reduce/prevent its disruption during injury. Since high brain complexity makes interpretation of in vivo data challenging BBB studies are frequently performed using simplified in vitro models. Although such models represent an important and frequently employed alternative for investigation of BBB function and alterations, our ability to translate in vitro findings to in vivo situation remains sub-optimal. Consequently, despite the fact that our knowledge of the cellular and molecular mechanisms underlying BBB physiology and pathophysiology is constantly increasing, our ability to modulate barrier function remains virtually non-existent. Classical in vitro model systems have provided a wealth of knowledge until now, but it is now evident that newer in vitro models that are more representative of the in vivo situation are needed to further our understanding of barrier physiology. This paper will provide an overview of the BBB cellular components and the most frequently used in vitro BBB model systems. I will discuss their advantages and disadvantages, as well as highlight recently developed models that more closely mimic the BBB in vivo.

Citations

13 citations in Web of Science®
18 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

688 downloads since deposited on 11 Nov 2011
112 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > Center for Integrative Human Physiology
05 Vetsuisse Faculty > Institute of Veterinary Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2011
Deposited On:11 Nov 2011 12:58
Last Modified:05 Apr 2016 15:05
Publisher:Bentham Science
ISSN:1381-6128
Publisher DOI:10.2174/138161211797440159
PubMed ID:21827410
Permanent URL: http://doi.org/10.5167/uzh-50853

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 191kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations