UZH-Logo

Maintenance Infos

Musca domestica, a window on the evolution of sex-determining mechanisms in insects.


Dübendorfer, A; Hediger, M; Burghardt, G; Bopp, D (2002). Musca domestica, a window on the evolution of sex-determining mechanisms in insects. International Journal of Developmental Biology, 46(1):75-79.

Abstract

The genetic cascades regulating sex determination of the housefly, Musca domestica, and the fruitfly, Drosophila melanogaster, appear strikingly different. The bifunctional switch gene doublesex, however, is present at the bottom of the regulatory cascades of both species, and so is transformer-2, one of the genetic elements required for the sex-specific regulation of doublesex. The upstream regulators are different: Drosophila utilizes Sex-lethal to coordinate the control of sex determination and dosage compensation, i.e., the process that equilibrates the difference of two X chromosomes in females versus one X chromosome in males. In the housefly, Sex-lethal is not involved in sex determination, and dosage compensation, if existent at all, is not coupled with sexual differentiation. This allows for more adaptive plasticity in the housefly system. Accordingly, natural housefly populations can vary greatly in their mechanism of sex determination, and new types can be generated in the laboratory.

The genetic cascades regulating sex determination of the housefly, Musca domestica, and the fruitfly, Drosophila melanogaster, appear strikingly different. The bifunctional switch gene doublesex, however, is present at the bottom of the regulatory cascades of both species, and so is transformer-2, one of the genetic elements required for the sex-specific regulation of doublesex. The upstream regulators are different: Drosophila utilizes Sex-lethal to coordinate the control of sex determination and dosage compensation, i.e., the process that equilibrates the difference of two X chromosomes in females versus one X chromosome in males. In the housefly, Sex-lethal is not involved in sex determination, and dosage compensation, if existent at all, is not coupled with sexual differentiation. This allows for more adaptive plasticity in the housefly system. Accordingly, natural housefly populations can vary greatly in their mechanism of sex determination, and new types can be generated in the laboratory.

Citations

65 citations in Web of Science®
67 citations in Scopus®
Google Scholar™

Downloads

73 downloads since deposited on 11 Feb 2008
11 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:1 January 2002
Deposited On:11 Feb 2008 12:15
Last Modified:05 Apr 2016 12:14
Publisher:University of the Basque Country Press (UBC Press)
ISSN:0214-6282
Related URLs:http://www.ijdb.ehu.es/web/paper.php?doi=11902690
PubMed ID:11902690
Permanent URL: http://doi.org/10.5167/uzh-509

Download

[img]
Preview
Filetype: PDF
Size: 241kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations