UZH-Logo

Maintenance Infos

Sex-dependent selection differentially shapes genetic variation on and off the guppy y chromosome


Postma, E; Spyrou, N; Rollins, L A; Brooks, R C (2011). Sex-dependent selection differentially shapes genetic variation on and off the guppy y chromosome. Evolution, 65(8):2145-2156.

Abstract

Because selection is often sex-dependent, alleles can have positive effects on fitness in one sex and negative effects in the other, resulting in intralocus sexual conflict. Evolutionary theory predicts that intralocus sexual conflict can drive the evolution of sex limitation, sex-linkage, and sex chromosome differentiation. However, evidence that sex-dependent selection results in sex-linkage is limited. Here, we formally partition the contribution of Y-linked and non-Y-linked quantitative genetic variation in coloration, tail, and body size of male guppies (Poecilia reticulata)-traits previously implicated as sexually antagonistic. We show that these traits are strongly genetically correlated, both on and off the Y chromosome, but that these correlations differ in sign and magnitude between both parts of the genome. As predicted, variation in attractiveness was found to be associated with the Y-linked, rather than with the non-Y-linked component of genetic variation in male ornamentation. These findings show how the evolution of Y-linkage may be able to resolve sexual conflict. More generally, they provide unique insight into how sex-specific selection has the potential to differentially shape the genetic architecture of fitness traits across different parts of the genome.

Because selection is often sex-dependent, alleles can have positive effects on fitness in one sex and negative effects in the other, resulting in intralocus sexual conflict. Evolutionary theory predicts that intralocus sexual conflict can drive the evolution of sex limitation, sex-linkage, and sex chromosome differentiation. However, evidence that sex-dependent selection results in sex-linkage is limited. Here, we formally partition the contribution of Y-linked and non-Y-linked quantitative genetic variation in coloration, tail, and body size of male guppies (Poecilia reticulata)-traits previously implicated as sexually antagonistic. We show that these traits are strongly genetically correlated, both on and off the Y chromosome, but that these correlations differ in sign and magnitude between both parts of the genome. As predicted, variation in attractiveness was found to be associated with the Y-linked, rather than with the non-Y-linked component of genetic variation in male ornamentation. These findings show how the evolution of Y-linkage may be able to resolve sexual conflict. More generally, they provide unique insight into how sex-specific selection has the potential to differentially shape the genetic architecture of fitness traits across different parts of the genome.

Citations

18 citations in Web of Science®
18 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 18 Nov 2011
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:2011
Deposited On:18 Nov 2011 12:34
Last Modified:05 Apr 2016 15:06
Publisher:Wiley-Blackwell
ISSN:0014-3820
Publisher DOI:https://doi.org/10.1111/j.1558-5646.2011.01314.x
Other Identification Number:ISI:000293182700002
Permanent URL: https://doi.org/10.5167/uzh-51177

Download

[img]
Content: Accepted Version
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations