UZH-Logo

Maintenance Infos

Genetic transformation of the housefly Musca domestica with the lepidopteran derived transposon piggyBac.


Hediger, M; Niessen, M; Wimmer, E A; Dübendorfer, A; Bopp, D (2001). Genetic transformation of the housefly Musca domestica with the lepidopteran derived transposon piggyBac. Insect Molecular Biology, 10(2):113-119.

Abstract

The piggyBac transposable element was successfully used for stable genetic transformation of the housefly Musca domestica. The construct contains the EGFP marker under the control of Pax-6 binding sites, which can drive eye-specific expression in insect species as distantly related as Drosophila melanogaster and Tribolium castaneum [Berghammer, A.J., Klingler, M. and Wimmer, E.A. (1999) Nature 402: 370-371]. We obtained seven independent integration events among 41 fertile G0 Musca flies. Most of the transformed lines contained two or more chromosomal insertions of the EGFP marker which were stably inherited over more than 15 generations. piggyBac-mediated transposition was verified by identifying the characteristic TTAA duplication at the insertion sites. This first report of stable transmission of a genetic marker in Musca confirms the use of this vector-marker system for effective gene transfer in a broad range of insect species.

The piggyBac transposable element was successfully used for stable genetic transformation of the housefly Musca domestica. The construct contains the EGFP marker under the control of Pax-6 binding sites, which can drive eye-specific expression in insect species as distantly related as Drosophila melanogaster and Tribolium castaneum [Berghammer, A.J., Klingler, M. and Wimmer, E.A. (1999) Nature 402: 370-371]. We obtained seven independent integration events among 41 fertile G0 Musca flies. Most of the transformed lines contained two or more chromosomal insertions of the EGFP marker which were stably inherited over more than 15 generations. piggyBac-mediated transposition was verified by identifying the characteristic TTAA duplication at the insertion sites. This first report of stable transmission of a genetic marker in Musca confirms the use of this vector-marker system for effective gene transfer in a broad range of insect species.

Citations

53 citations in Web of Science®
60 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:1 April 2001
Deposited On:11 Feb 2008 12:15
Last Modified:05 Apr 2016 12:14
Publisher:Wiley-Blackwell
ISSN:0962-1075
Publisher DOI:10.1046/j.1365-2583.2001.00243.x
PubMed ID:11422506

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations