Reactions of alpha,beta-unsaturated Thioamides with Diazo compounds

Egli, D H; Linden, A; Heimgartner, H

Abstract: Several reactions of the α,β-unsaturated thioamide 8 with diazo compounds 1a–1d were investigated. The reactions with CH₂N₂ (1a), diazocyclohexane (1b), and phenyl diazo methane (1c) proceeded via a 1,3-dipolar cycloaddition of the diazo dipole at the C=C bond to give the corresponding 4,5-dihydro-1H-pyrazole-3-carbothioamides 12a–12c, i.e., the regioisomer which arose from the bond formation between the N-terminus of the diazo compound and the C(alpha)-atom of 8. In the reaction of 1a with 8, the initially formed cycloadduct, the 4,5-dihydro-3H-pyrazole-3-carbothioamide 11a, was obtained after a short reaction time. In the case of 1c, two tautomers 12c and 12c′ were formed, which, by derivatization with 2-chlorobenzoyl chloride 14, led to the crystalline products 15 and 15′. Their structures were established by X-ray crystallography. From the reaction of 8 and ethyl diazoacetate (1d), the opposite regioisomer 13 was formed. The monosubstituted thioamide 16 reacted with 1a to give the unstable 4,5-dihydro-1H-pyrazole-3-carbothioamide 17.

DOI: https://doi.org/10.1002/hlca.200690252

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-51283
Accepted Version

Originally published at:
Reactions of α,β-Unsaturated Thioamides with Diazo Compounds

by Daniel H. Egli1), Anthony Linden and Heinz Heimgartner*

Organisch-chemisches Institut der Universität Zürich, Winterthurerstr. 190, CH-8057 Zürich
(电话: +41 44 635 42 82; 电子邮件: heimgart@oci.unizh.ch)

Several reactions of the α,β-unsaturated thioamide 8 with diazo compounds 1a-1d were investigated. The reactions with CH$_2$N$_2$ (1a), diazocyclohexane (1b), and phenyldiazomethane (1c) proceeded via a 1,3-dipolar cycloaddition of the diazo dipole at the C,C-double bond to give the corresponding 4,5-dihydro-$1H$-pyrazole-3-thiocarboxamide 12a-12c, i.e., the regioisomer which arose from the bond formation of the N-terminus of the diazo compound with the α-C-atom of 8. In the reaction of 1a with 8, the initially formed cycloadduct, the 4,5-dihydro-$3H$-pyrazole 11a, was obtained after short reaction time. In the case of 1c two tautomers 12c and 12c' were formed, which, by derivatization with 2-chlorobenzoyl chloride 14, led to the crystalline products 15 and 15'. Their structures were established by X-ray crystallography. In the reaction of 8 and ethyl diazoacetate (1d), the opposite regioisomer 13 was formed. The monosubstituted thioamide 16 reacted with 1a to give the unstable 4,5-dihydro-$1H$-pyrazole-3-thiocarboxamide 17.
1. **Introduction.** – In the last twenty years, reactions of thioketones with diazo compounds have been investigated extensively. It is generally accepted that the attack of the diazo compound 1 at the thioketone 2 leads to a 2,5-dihydro-1,3,4-thiadiazole 3, which, in general, at room temperature is not stable and undergoes a 1,3-dipolar cycloreversion by elimination of N₂ to give the intermediate thiocarbonyl ylide 4. This reactive intermediate can undergo different reactions to yield stable products (for reviews see [1][2]). On the one hand, a 1,3-dipolar electrocyclization can take place to give the thiirane 5, or, by subsequent desulfurization, to yield the olefin 6. On the other hand, 4 can react with a dipolarophile in a 1,3-dipolar cycloaddition to give the corresponding heterocycles 7 (Scheme 1). Furthermore, stabilization of 4 via dimerization or [1,4]H shift have also been reported.

Scheme 1

Investigations concerning 1,3-dipolar cycloadditions of diphenyldiazomethane (1, \(R^1 = R^2 = \text{Ph} \)) with different dipolarophiles by Huisgen and Langhals have shown that thiones 2, especially aromatic ones, react extremely fast with diazo compounds and, therefore, were denominated as “superdipolarophiles” [3]. Thioamides have not been included in these comparative studies, but amino substituents in 4-position of thiobenzophenone led to a decrease of the reaction rate. As diazo compounds are classified as relatively electron-rich dipoles [4] and, therefore, electron-poor dipolarophiles are suitable for an optimal HOMO-LUMO-interaction [5], it is a moot point whether thioamides, as relatively electron-rich dipolarophiles undergo a 1,3-dipolar cycloaddition with diazo compounds and the subsequent cycloreversion to give the intermediate thiocarbonyl ylides. Studies of El-Sharif et al. have shown that, in some cases, it is possible to generate thiocarbonyl ylide intermediates from
thioamides, which led via 1,3-dipolar electrocyclization and subsequent desulfurization to the corresponding olefins [6].

The aim of the present work was to clarify whether unsaturated thioamides like (E)-N,N-diethylbut-2-enethioamide (8) react with diazo compounds in the manner described above, or if the dipolarophilicity of the C=C-double bond exceeds that of the C=S group. If the cycloaddition at the C=S group would be preferred, a thiocarbonyl ylide of type 9 with an extended π-system (i.e. R² = MeCH=CH) could be formed (Scheme 2). The latter should be able to undergo a 1,5-dipolar electrocyclization to give 2,3-dihydrothiophene 10. Analogous 1,5-dipolar electrocyclizations of thiocarbonyl ylides bearing C=O [7-9] (and refs. cited therein), C=S [9], and C=N groups [10] have been reported recently.

Scheme 2

2. Results and Discussion. – Solutions of thioamide 8 [11] in CH₂Cl₂ reacted with different diazo compounds at room temperature without any catalyst within a few hours or days to give the corresponding 1:1 adducts in good yields. According to the MS- and NMR-spectra, the resulting products have not been formed by an attack of the diazo compound at the thiocarbonyl group as it was observed in the cases of the reactions with thioketones [7-9]. In the ¹³C-NMR spectra of the products, a signal at ca. 190 ppm, which is characteristic for the thioamide C-atom was present, and the CI-MS spectra showed a [M + 1]⁺-peak of the 1:1-adducts indicating that no N₂ elimination occurred. Thus, we proposed a 1,3-dipolar cycloaddition of the diazo component at the C,C-double bond conjugated with the C=S group. The formation of an intermediate thiocarbonyl ylide can be consequently excluded.
Investigations of the main product of the reaction of 8 with diazomethane (1a) obtained after a reaction time of 1 d by using two-dimensional NMR- (HMBC) and \(^{15}\text{N}\)-NMR methods show that it consists of a 4,5-dihydro-1H-pyrazole and a \(N,N\)-diethylthioamide group. If the reaction was quenched after 1 h by adding AcOH and the work up was carried out quickly, two isomeric products 11a and 12a were obtained, whereof 11a disappeared after a few h to give 12a (Scheme 3). The less stable isomer 11a is the result of a 1,3-dipolar cycloaddition, and a subsequent rearrangement via a [1,3]-H shift and leads to the more stable product 12a.

It is surprising that no further reaction of the rearranged product with the diazo component could be observed. In a control experiment, 1a was added to the pure product 12a, but even stirring of the mixture at room temperature for 2 d did not result in a new product.

Scheme 3

The reactions of 8 with diazocyclohexane (1b) and phenyldiazomethane (1c), respectively, occurred in a similar way. Although an intermediate could be detected by TLC - most likely the initial [2 + 3]-cycloaduct of type 11 – only 12b was isolated in the first case (Scheme 4). Two isomeric 1:1 adducts were obtained in the reaction with 1c, but none was the initial adduct of type 11. Both isomers showed an NH absorption in the \(^1\text{H}\)-NMR spectrum (s at 5.72-5.18 ppm) and a \(C=\text{N}\) signal at 155.6 ppm in the \(^13\text{C}\)-NMR spectrum. The isomers could not be separated but interconverted quickly. On this basis we proposed the two tautomeric structures 12c and 12c’. Derivatization with 2-chlorobenzoyl chloride led to the crystalline benzoyl derivatives 15 and 15’ (Scheme 4), which were separated by means of chromatography. Recrystallization from hexane/CH\(_2\)Cl\(_2\) yielded suitable crystals for the X-ray crystal-structure determination (Figure).
Since the space group of 15 is centrosymmetric, the compound in the crystal is racemic. The Me and Ph substituents on the five-membered ring are in a *cis* configuration. One of the Et groups of the diethylamino group is disordered over two equally occupied orientations as a result of random inversion of the position of the lone pair of electrons on the N-atom. The compound has crystallized in a space group that would allow for an enantiomerically pure compound, but refinement of the absolute structure parameter indicates that the crystals are most likely inversion twins. The five-membered ring of 15' has a slightly flattened envelope conformation with atom C(5) as the envelope flap. The substituents at atoms C(4) and C(5) have a *trans* relationship.

The crystal-structure determination of the derivatives 15 and 15’ proved that the reaction of 8 with 1c occurred regioselectively, but led to a mixture of two tautomers\(^2\), namely the 3-thiocarboxamide 12c and the 5-thiocarboxamide 12c’ (*Scheme 4*). An explanation of the formation of 12c’ is the conjugation of the C=N bond with the Ph group at C(3).

The 1,3-dipolar cycloadditions of 8 with 1a-1c proceeded all with the same regioselectivity, *i.e.*, the N-terminus of the diazo compound reacted with the \(\alpha\)-C-atom of the thioamide to give the intermediate 4,5-dihydro-3\(H\)-pyrazole-3-

\(^2\) In the reaction of 8 with 1a and 1b, respectively, only the formation of the isomer with the C=N bond conjugated with the thioamide group, *i.e.* 12a and 12b, respectively, was observed.
thiocarboxamides of type 11 (Scheme 3). On the other hand, the addition of ethyl diazoacetate (1d), with 8 led to the 4,5-dihydro-1H-pyrazole 13 (Scheme 4), which bears the thiocarboxamide group at C(4). Therefore, the C-terminus of the diazo dipole reacted with the α-C-atom of the thioamide.

The reaction of the N-monosubstituted α,β-unsaturated thioamide 16 with 1a at room temperature led within a few min to an unstable product, which decomposed quickly. The NMR-spectra of the crude product indicated the formation of the corresponding thioamide 17 with a 4,5-dihydro-1H-pyrazole residue (Scheme 5).

Scheme 5

3. **Conclusions.** – In all reactions of thioamide 8 with diazo compounds 1a-1d, an addition of the dipole onto the C,C-double bond of 8 took place exclusively. Surprisingly, no addition onto the C=S group could be observed. The formed products are the corresponding dihydropyrazole thioamides 12a-12c and 13. In the cases of 12a-12c, the products were formed in a regioselective cycloaddition, in which the N-terminus of the diazo compound added to the α-C-atom of 8, followed by a [1,3]-H shift. The α,β-unsaturated thioamide 16 reacted with 1a analogously, but the corresponding product 17 is extremely unstable. In the case of the reaction

3) This regioselectivity is supported by the examination of the orbital coefficients of the HOMO (1a, 1c) and the LUMO (8) calculated with AMPAC version 8.16.7 with the AM1-Hamilton. Unfortunately, the results of the analogous calculations for the reaction with ethyl diazoacetate (1d) are not in accordance with the different regioselectivity of the cycloaddition. We thank Dr. R. W. Kunz for carrying out the calculations.
of 8 with 1d, the C-terminus of the diazo compound added to the α-C-atom of 8 to give the opposite regioisomer 13. In summary, in reactions with diazo compounds, the C=S group of α,β-unsaturated thioamides is less reactive than the C=C bond and therefore, thioamides of type 8 and 16 are no suitable precursors for the generation of thiocarbonyl ylides.

We thank the analytical units of our institute for spectra and analyses, and the Swiss National Science Foundation and F. Hoffmann-La Roche AG, Basel, for financial support.

Experimental Part

1. General. See [9]. For the assignment of 15N signals, 15N-HMBC 2D-NMR methods were employed.

2. Starting Materials. The thioamides and diazo compounds were prepared following known protocols: diazomethane (1a) [13], diazocyclohexane (1b) [14], phenyldiazomethane (1c) [15], (E)-N,N-diethylbut-2-enethioamide (8) [11], N-methylprop-2-enethioamide (16) [16]. All other reagents are commercially available.

3. Reaction of (E)-N,N-Diethylbut-2-enethioamide (8) with Diazo Compounds.

3.1. N,N-Diethyl-4,5-dihydro-4-methyl-3H-pyrazole-3-thiocarboxamide (11a) and N,N-Diethyl-4,5-dihydro-4-methyl-1H-pyrazole-3-thiocarboxamide (12a). To a soln. of 8 (1.0 mmol) in CH$_2$Cl$_2$ (10 ml) was added drop-wise a soln. of 1a (ca. 2 mmol) in Et$_2$O (6 ml). After 2 h, AcOH (ca. 10 drops) was added to quench the reaction. Purification of the crude product by CC (hexane/AcOEt 1:4 to 1:1) afforded 92 mg (45%) of 11a and 66 mg (33%) of 12a. Data of 11a: R$_f$-value:
(hexane/AcOEt 1:1): 0.15. Yellowish oil. IR (neat): 3306m, 2971vs, 2934vs, 2873s, 1688m, 1549m, 1505vs, 1454vs, 1428vs, 1381vs, 1359vs, 1305vs, 1272vs, 1233vs, 1139s, 1095s, 1077s, 980w, 921m, 888w, 856w, 836m, 783w, 757w, 736m. 1H-NMR: 5.26–5.23 (m, HC(3)); 4.95–4.85 (dq-like, 1 H of H2C(5)); 4.39–4.14 (m, 1H of H2C(5), MeC\textsubscript{3}H\textsubscript{2}N); 3.96–3.76 (m, MeC\textsubscript{3}H\textsubscript{2}N); 3.00–2.91 (m, HC(4)); 1.44 (t, J = 7.2, MeCH\textsubscript{2}N); 1.31 (t, J = 7.1, MeCH\textsubscript{2}N); 1.03 (d, J = 7.1, MeCH(4)). 13C-NMR: 194.3 (s, CS); 99.1 (d, C(3)); 85.4 (t, C(5)); 48.5, 46.5 (2t, 2 CH\textsubscript{2}N); 33.2 (d, C(4)); 18.5 (q, MeC(4)); 14.1, 10.9 (2q, 2 MeCH\textsubscript{2}N). CI-MS (NH\textsubscript{3}): 200 (100, [M + 1]$^+$), 172 (33, [M + 1 − N\textsubscript{2}]$^+$).

Data of 12a: R\textsubscript{f}-value: (hexane/AcOEt 1:1): 0.1. Yellowish oil. IR (neat): 3295m, 2971m, 2872w, 1502vs, 1431s, 1379m, 1360w, 1344w, 1304m, 1271s, 1251m, 1227w, 1208m, 1140m, 1114w 1076w, 1003w, 969w, 921w, 819w, 779w, 760w. 1H-NMR: 5.50–5.00 (br. s, NH); 4.41–4.27 (m, MeC\textsubscript{3}H\textsubscript{2}N); 4.15–3.97 (m, MeC\textsubscript{3}H\textsubscript{2}N, HC(4), 1 H of H\textsubscript{2}C(5)); 3.39 (t, J = 8.1, 1 H of H\textsubscript{2}C(5)); 1.65–1.53 (m, 2 MeCH\textsubscript{2}N); 1.50 (d, J = 6.8, MeHC(4)). 13C-NMR: 189.6 (s, CS); 156.7 (s, C(3)); 55.1 (t, C(5)); 47.8, 46.4 (2t, 2 CH\textsubscript{2}N); 43.1 (d, C(4)); 15.5, 14.2 (2q, 2 MeCH\textsubscript{2}N); 11.0 (q, MeHC(4)). CI-MS (NH\textsubscript{3}): 200 (100, [M + 1]$^+$).

In an analogous experiment, to a soln. of 8 (1.3 mmol) in dry THF (10 ml) was added drop-wise a soln. of 1a (ca. 3 mmol) in THF (ca. 8 ml). Then, the mixture was stirred for 1 day at r.t. Purification of the crude product by CC (hexane/AcOEt 1:2) afforded 218 mg (84%) of (12a) as a single product.

3.2. N,N-Diethyl-4-methyl-1,2-diazaspiro[4.5]deca-2-en-3-thiocarboxamide (12b). To a soln. of 8 (200 mg, 1.3 mmol) in CH\textsubscript{2}Cl\textsubscript{2} (10 ml) was added drop-wise a soln. of 1b (ca. 2 mmol) in CH\textsubscript{2}Cl\textsubscript{2} (40 ml) and the mixture was stirred at r.t. for 6 h. Purification of the crude product by CC (hexane/AcOEt 1:2) afforded 283 mg
(81%) of 12b. Yellowish crystals. M.p. 74–76°. IR (KBr): 3329s, 2966m, 2928vs, 2856m, 1622w, 1579m, 1512vs, 1451s, 1437s, 1405m, 1372m, 1356m, 1319w, 1297m, 1285m, 1267s, 1248s, 1209m, 1135m, 1097m, 1075m, 1061m, 1039w, 1019m, 981w, 948m, 936w, 916m, 855w, 844w, 831w, 809w, 781m, 738s, 698s, 666vs. 1H-NMR: 5.2–4.7 (br. s, NH); 4.00–3.90, 3.73–3.65 (2m, 2 CH2N); 3.31 (q,
J = 7.3, HC(4)); 1.58–1.37 (m, 5 CH2); 1.36–1.13 (m, 2 MeCH2N); 0.96 (d, J = 7.3, MeC(4)). 13C-NMR: 190.0 (s, CS); 156.4 (s, C(3)); 157.9 (s, C(5)); 50.3 (d, C(4)); 47.8, 46.5 (2t, 2 CH2N); 36.3, 30.3, 25.4, 23.5, 22.6 (5t, cyclohexyl CH2); 14.3, 11.0 (2q, 2 MeCH2N); 10.1 (q, MeC(4)). EI-MS: 267 (86, M+), 252 (41, [M – Me]2+), 224 (56, [M – Me – N2]2+), 151 (36, [M – SNEt2]3+), 98 (59, C6H12N+), 72 (100, Et2N+).

3.3. N,N-Diethyl-4,5-dihydro-4-methyl-5-phenyl-1H-pyrazole-3-thiocarboxamide (12c) and N,N-Diethyl-4,5-dihydro-4-methyl-3-phenyl-1H-pyrazole-5-thiocarboxamide (12c′)4). To a soln. of 8 (843 mg, 5.2 mmol) in toluene (30 ml) was added drop-wise a soln. of 1c (ca. 7 mmol) in toluene (150 ml) over a period of 3 d. Purification of the crude product by CC (hexane/AcOEt 8:1 to 2:1) afforded 563 mg (52%) of a mixture of the two isomeric thioamides 12c and 12c′ as an oil and 197 mg of the starting material. Data of 12c: 1H-NMR: 7.74–7.69 (d-like, 1 arom. H); 7.43–7.31 (m, 4 arom. H); 5.72–5.18 (br. s, NH); 4.41 (d, J = 2.8, HC(5)); 4.25–3.62 (m, 2 CH2N); 3.54 (dq; J = 2.8, 7.2, HC(4)); 1.52 (d, J = 7.2,

4) The tautomers 12c and 12c′ could not be separated by HPLC because of a fast tautomerization. As it was not possible to isolate one of the two isomers in pure form, the correlation of the NMR signals with the arom. C-atoms and Et groups are not absolutely clear.
MeC(4)); 1.44-1.32 (m, 2 MeCH₂N). ¹³C-NMR: 201.5 (s, CS); 155.6 (s, C(5));
131.5 (s, 1 arom. C); 128.4, 127.5, 126.4 (3d, 5 arom. CH); 71.6 (d, C(3)); 48.7 (t,
CH₂N); 48.0 (d, C(4)); 45.5 (t, CH₂N); 17.9 (q, MeC(4)); 14.3, 13.3 (2q, 2
MeCH₂N). CI-MS (NH₃, mixture): 276 (100, [M + 1]⁺), 264 (36).

Data of 12c⁺: ¹H-NMR: 7.74-7.69 (d-like, 1 arom. H); 7.43–7.31 (m, 4 arom. H);
5.72–5.18 (br. s, NH); 5.11 (d, J = 10.1, HC(3)); 4.25–3.79 (m, 2 CH₂N, HC(4));
1.44–1.32 (m, 2 MeCH₂N); 0.77 (d, J = 8.4, MeC(4)). ¹³C-NMR: 189.2 (s, CS);
155.6 (s, C(3)); 137.7 (s, 1 arom. C); 128.8, 128.3, 127.2 (3d, 5 arom. CH); 68.3 (d,
C(5)); 47.9 (t, CH₂N); 46.8 (d, C(4)); 46.7 (t, CH₂N); 11.3 (q, MeC(4)); 11.0, 10.9
(2q, 2 MeCH₂N).

3.4. N,N-Diethyl-1-(2-chlorobenzoyl)-4,5-dihydro-4-methyl-5-phenyl-1H-
pyrazole-3-thiocarboxamide (15) and N,N-Diethyl-1-(2-chlorobenzoyl)-4,5-
dihydro-4-methyl-3-phenyl-1H-pyrazole-5-thiocarboxamide (15⁺). To a soln. of a
mixture of 12c and 12c⁺ (275 mg, 1 mmol) in CH₂Cl₂ (20 ml) was added 2-
chlorobenzoyl chloride (14, 174 mg, 1 mmol) and Et₃N (111 mg). After 15 min, the
mixture was poured on ice (50 g) and diluted with CH₂Cl₂ (30 ml). After separation
of the two phases, the aq. phase was extracted with CH₂Cl₂, the org. phase was
dried (MgSO₄), and the solvent was evaporated. Purification of the crude product by
CC (hexane/AcOEt 5:1) afforded 163 mg of 15 (40%), 100 mg of 15⁺ (25%), and
84 mg (20%) of a mixture of the two isomers. Data of 15: Yellowish crystals. M.p.
161–162°. IR (Golden Gate ATR): 3056w, 3031w, 2973w, 2935w, 2874w, 1634m,
1594w, 1579w, 1508m, 1493w, 1473m, 1444m, 1422m, 1380w, 1363m, 1309w,
1297w, 1282w, 1264m, 1253m, 1221m, 1201w, 1173w, 1139m, 1092w, 1076w,
1055m, 1037w, 979w, 918w, 841m, 822m, 772m, 746s, 691s. ¹H-NMR: 7.40–7.25
(m, 9 arom. H); 5.74 (d, J = 11.6, HC(5)); 4.41 (dq, J = 11.6, 7.6, HC(4)); 4.21–4.10
(m, 1 H of CH₂N); 3.83–3.64 (m, 2 H of 2 CH₂N); 3.58–3.47 (m, 1 H of CH₂N);
1.24, 1.11 (2t, J = 7.1, 2 MeCH2N); 0.76 (d, J = 7.6, MeC(4)). 13C-NMR: 187.1 (s, CS); 165.7 (s, CO); 158.4 (s, C(3)); 135.8, 130.8 (2s, 2 arom. C)5); 130.2, 129.1, 128.8, 128.5, 127.8, 126.8, 126.5 (7d, 9 arom. CH); 64.0 (d, C(5)); 48.3 (t, CH2N); 47.7 (d, C(4)); 46.4 (t, CH2N); 14.1 (q, MeC(4)); 11.9, 10.8 (2q, 2 MeCH2N). CI-MS (NH3): 416 (41), 415 (25), 414 (100, M+). Anal. calc. for C22H24ClON3S (413.96): C 63.83, H 5.84, Cl 8.56, N 10.15, S 7.75; found: C 63.80, H 5.77, Cl 8.56, N 10.07, S 7.84.

Crystals suitable for the X-ray crystal-structure determination were grown from CH2Cl2/hexane by slow evaporation of the solvent.

Data of 15': Colorless crystals. M.p. 176–179°. IR (Golden Gate ATR): 3066w, 2975w, 2939w, 2873w, 2833w, 1982w, 1962w, 1839w, 1637m, 1592w, 1567w, 1503m, 1454m, 1440m, 1421m, 1378w, 1306w, 1224w, 1155w, 1089w, 1059w, 833w, 784m, 770m, 745m, 692m. 1H-NMR: 7.62–7.57 (m, 3 arom. H); 7.43–7.26 (m, 6 arom. H); 5.35 (d, J = 3.3, HC(3)); 4.26–4.07 (m, 2 H of 2 CH2N); 4.26–3.67 (m, 2 H of CH2N, HC(4)); 1.49–1.44 (m, MeCH2N, MeC(4)); 1.32 (t, J = 7.1, MeCH2N). 13C-NMR: 198.4 (s, CS); 165.3 (s, CO); 159.4 (s, C(5)); 135.2, 131.3 (2s, 2 arom. C)6); 130.3, 130.0, 129.7, 129.1, 128.5, 127.2, 126.3 (7d, 9 arom. CH); 68.5 (d, C(3)); 49.0 (t, CH2N); 48.9 (d, C(4)); 46.5 (t, CH2N); 18.5, 14.5, 10.9 (3q, 2 MeCH2N, MeC(4)). CI-MS (NH3): 416 (45), 415 (27), 414 (100, M+).

Crystals suitable for the X-ray crystal-structure determination were grown from CH2Cl2/hexane by slow evaporation of the solvent.

5) The signal of the arom. CCl could not be detected. Perhaps the signal overlaps with the signal at 135.8 ppm, which is more intensive than expected.

6) The signal of the arom. CCl could not be detected.
3.5. **4-Ethyl (N,N-Diethylthiocarbamoyl)-4,5-dihydro-5-methyl-1H-pyrazole-3-carboxylate** (13). To a soln. of 8 (200 mg, 1.3 mmol) in CH₂Cl₂ (10 ml) was added drop-wise a soln. of 1d (ca. 6 mmol) in CH₂Cl₂ (20 ml) over a period of 3 d whereas the mixture was maintained at 45°. Purification of the crude product by CC (hexane/AcOEt 1:2) afforded 184 mg (50%) of 13. IR (KBr): 3315 m, 2978 s, 2935 s, 2874 m, 1703 vs, 1578 s, 1503 vs, 1450 vs, 1426 vs, 1374 s, 1344 s, 1272 vs, 1223 vs, 1172 m, 1132 vs, 1079 vs, 1019 vs, 942 w, 921 w, 831 m, 770 m, 739 m. ¹H-NMR: 7.45–6.80 (br. s, NH); 4.32 (d, J = 3.3, HC(4)); 4.28 (q, J = 7.1, CH₂O); 4.19 (m; 1 H of CH₂N); 3.80–3.66 (m, 2 H of 2 CH₂N); 3.62–3.50 (m, 1 H of CH₂N); 3.25 (dq, J = 7.2, 3.3, HC(5)); 3.14–3.03 (t, J = 7.1, 7.2, MeCH₂O, MeCH₂N); 1.28–1.25 (t, J = 7.1, MeCH₂N). ¹³C-NMR: 200.0 (s, CS); 161.8 (s, COOEt); 146.3 (s, C(3)); 72.3 (d, C(4)); 61.1 (t, CH₂O); 48.7 (t, CH₂N); 46.9 (d, C(5)); 45.3 (t, CH₂N); 17.4 (q, MeC(5)); 14.1 (q, MeCH₂O); 13.2, 10.8 (2q, 2 MeCH₂N). CI-MS (NH₃): 289 (9, [M + NH₄]⁺), 272 (100, [M + 1]⁺), 244 (34, [M – N₂ + 1]⁺).

4. **Reaction of N-Methylprop-2-enethioamide** (16) with 1a. To a soln. of 16 (2.0 mmol) in THF (10 ml) was added drop-wise a soln. of 1a (ca. 3 mmol) in THF (8 ml) at r.t., and the mixture was stirred for 10 min. The crude product was purified by flash-CC (hexane/AcOEt 3:1 to 1:2): ca. 100 mg (ca. 50%) of N-methyl-4,5-dihydro-1H-pyrazole-3-thiocarboxamide (17). Yellowish oil ⁷. ¹H-NMR: 8.60–8.10 (br. s, MeNH); 6.10–5.50 (br. s, HN(1)); 3.55–3.48 (t-like, H₂C(5)); 3.16 (d, MeN); 3.14–3.03 (t-like, H₂C(4)). ¹³C-NMR: 188.3 (s, CS); 151.4 (s, C(3)); 49.3 (t, H₂C(5)); 32.5 (t, H₂C(4)); 31.9 (q, MeN).

⁷) The product 17 is extremely unstable.
5. X-Ray Crystal-Structure Determination of \(15\) and \(15'\) (Table and Figure)\(^8\). All measurements were performed on a Nonius KappaCCD diffractometer [17] using graphite-monochromated Mo\(K_{\alpha}\) radiation (\(\lambda = 0.71073\) Å) and an Oxford Cryosystems Cryostream 700 cooler. The data collection and refinement parameters are given in the Table, and views of the molecules are shown in the Figure. Data reduction was performed with HKL Denzo and Scalepack [18]. The intensities were corrected for Lorentz and polarization effects, and an absorption correction based on the multi-scan method [19] was applied. Equivalent reflections, other than Friedel pairs (in \(15'\)), were merged. The structures were solved by direct methods using SIR92 [20], which revealed the positions of all non-H-atoms. In the case of \(15\), one of the Et groups of the Et\(_2\)N group is disordered over two orientations. Two sets of positions were defined for the atoms of this Et group and the site occupation factors of the major conformation refined to a value close to 0.5, so the site occupation factors were fixed at 0.5 thereafter. Similarity restraints were applied to the chemically equivalent bond lengths and angles involving the ordered and disordered Et groups, while neighboring atoms within and between each conformation of the disordered Et group were restrained to have similar atomic displacement parameters. The non-H-atoms were refined anisotropically. All of the H-atoms were placed in geometrically calculated positions and refined by using a riding model where each H-atom was assigned a fixed isotropic displacement parameter with a value equal to 1.2U\(_{eq}\) of its parent atom (1.5U\(_{eq}\) for the Me

\(^8\) CCDC- contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Center via http://www.ccdc.cam.ac.uk/data_request/cif.
groups). The refinement of the structures was carried out on F^2 using full-matrix least-squares procedures, which minimized the function $\Sigma w(F_o^2 - F_c^2)^2$. A correction for secondary extinction was applied. In the case of 15, 6 reflections, whose intensities were considered as extreme outliers, were omitted from the final refinement. Refinement of the absolute structure parameter [21] for 15' yielded a value of 0.44(10), which indicates that the crystals are most likely inversion twins. Neutral atom scattering factors for non-H-atoms were taken from [22a], and the scattering factors for H-atoms were taken from [23]. Anomalous dispersion effects were included in F_c [24]; the values for f' and f'' were those of [22b]. The values of the mass attenuation coefficients are those of [22c]. All calculations were performed using SHELXL97 [25] program.

Table

REFERENCES

Legends

Figure. ORTEP Plots [12] of the molecular structure of a) one of the two conformations of 15, and b) 15' (50% probability ellipsoids, arbitrary numbering of the atoms)
Table. *Crystallographic Data of Compounds 15 and 15’*

<table>
<thead>
<tr>
<th></th>
<th>15</th>
<th>15’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystallized from</td>
<td>hexane/CH₂Cl₂</td>
<td>hexane/CH₂Cl₂</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C₂₂H₂₄Cl₃NO₅S</td>
<td>C₂₂H₂₄Cl₃NO₅S</td>
</tr>
<tr>
<td>Formula weight [g mol⁻¹]</td>
<td>413.96</td>
<td>413.96</td>
</tr>
<tr>
<td>Crystal color, habit</td>
<td>yellow, prism</td>
<td>colorless, needle</td>
</tr>
<tr>
<td>Crystal dimensions [mm]</td>
<td>0.30 × 0.32 × 0.35</td>
<td>0.05 × 0.08 × 0.22</td>
</tr>
<tr>
<td>Temperature [K]</td>
<td>160(1)</td>
<td>160(1)</td>
</tr>
<tr>
<td>Crystal system</td>
<td>triclinic</td>
<td>orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>Pᵥ,1</td>
<td>P₂₁2₁2₁</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Reflections for cell determination</td>
<td>16212</td>
<td>173390</td>
</tr>
<tr>
<td>2θ range for cell determination</td>
<td>4 – 60</td>
<td>4 – 50</td>
</tr>
<tr>
<td>Unit cell parameters a [Å]</td>
<td>10.0771(2)</td>
<td>7.1060(2)</td>
</tr>
<tr>
<td>b [Å]</td>
<td>10.3993(2)</td>
<td>12.4905(4)</td>
</tr>
<tr>
<td>c [Å]</td>
<td>11.3362(2)</td>
<td>23.3874(8)</td>
</tr>
<tr>
<td>α [°]</td>
<td>77.840(1)</td>
<td>90</td>
</tr>
<tr>
<td>β [°]</td>
<td>65.069(1)</td>
<td>90</td>
</tr>
<tr>
<td>γ [°]</td>
<td>85.567(1)</td>
<td>90</td>
</tr>
<tr>
<td>V [Å³]</td>
<td>1053.02(4)</td>
<td>2075.8(1)</td>
</tr>
</tbody>
</table>

Dₐ [g cm⁻³]	1.305	1.324
µ(MoKα) [mm⁻¹]	0.298	0.302
Scan type	ϕ and ω	ϕ and ω
2θ (max) [°]	60	50
Transmission factors (min; max)	0.761; 0.915	0.794; 1.002
Total reflections measured	27147	29663
Symmetry-independent reflections	6137	3662
Reflections with I > 2 σ(I)	5049	3178
Reflections used in refinement	6131	3662
Parameters refined; restraints	276; 48	258
Final R(F) [I > 2σ(I) reflections]	0.0465	0.0518
wR(F²) (all data)	0.1270	0.1192
Weighting parameters (a; b)⁴	0.0645; 0.353	0.0458; 1.7391
Goodness of fit	1.062	1.130
Secondary extinction coeff.	0.27(1)	0.025(2)
Final Δmax/σ	0.001	0.001
Δρ(max; min) [e Å⁻³]	0.51; -0.45	0.25; -0.27

¹) w⁻¹ = σ²(Fo²) + (aP)² + bP where P = (Fo² + 2Fc²)/3
Scheme 1
Scheme 2

\[
\begin{align*}
\text{Et}_2\text{N} & \quad \text{S} \quad \text{Et}_2\text{N} \\
\text{CH}_2\text{N}_2 & \quad 1a \\
\text{S} \quad \text{Et}_2\text{N} & \quad \text{CH}_2\text{N}_2 \\
\text{8} & \quad \text{9} & \quad \text{10}
\end{align*}
\]
Scheme 3

\[
\text{Et}_2\text{N} \quad \text{CH}_2\text{N}_2 \quad \text{Et}_2\text{N} \quad \text{Et}_2\text{N}
\]

8 + CH\textsubscript{2}N\textsubscript{2} \rightarrow 11a \rightarrow 12a
Scheme 4
Scheme 5
Figure