Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-51411

Patzig, J; Jahn, O; Tenzer, S; Wichert, S P; de Monasterio-Schrader, P; Rosfa, S; Kuharev, J; Yan, K; Bormuth, I; Bremer, J; Aguzzi, A; Orfaniotou, F; Hesse, D; Schwab, M H; Möbius, W; Nave, K A; Werner, H B (2011). Quantitative and integrative proteome analysis of peripheral nerve myelin identifies novel myelin proteins and candidate neuropathy loci. Journal of Neuroscience, 31(45):16369-16386.

[img]
Preview
Published Version
PDF
4MB

View at publisher

Abstract

Peripheral nerve myelin facilitates rapid impulse conduction and normal motor and sensory functions. Many aspects of myelin biogenesis, glia-axonal interactions, and nerve homeostasis are poorly understood at the molecular level. We therefore hypothesized that only a fraction of all relevant myelin proteins has been identified so far. Combining gel-based and gel-free proteomic approaches, we identified 545 proteins in purified mouse sciatic nerve myelin, including 36 previously known myelin constituents. By mass spectrometric quantification, the predominant P0, periaxin, and myelin basic protein constitute 21, 16, and 8% of the total myelin protein, respectively, suggesting that their relative abundance was previously misestimated due to technical limitations regarding protein separation and visualization. Focusing on tetraspan-transmembrane proteins, we validated novel myelin constituents using immuno-based methods. Bioinformatic comparison with mRNA-abundance profiles allowed the categorization in functional groups coregulated during myelin biogenesis and maturation. By differential myelin proteome analysis, we found that the abundance of septin 9, the protein affected in hereditary neuralgic amyotrophy, is strongly increased in a novel mouse model of demyelinating neuropathy caused by the loss of prion protein. Finally, the systematic comparison of our compendium with the positions of human disease loci allowed us to identify several candidate genes for hereditary demyelinating neuropathies. These results illustrate how the integration of unbiased proteome, transcriptome, and genome data can contribute to a molecular dissection of the biogenesis, cell biology, metabolism, and pathology of myelin.

Citations

36 citations in Web of Science®
39 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

29 downloads since deposited on 01 Dec 2011
15 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Neuropathology
DDC:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2011
Deposited On:01 Dec 2011 10:23
Last Modified:05 Feb 2014 13:40
Publisher:Society for Neuroscience
ISSN:0270-6474
Publisher DOI:10.1523/JNEUROSCI.4016-11.2011
PubMed ID:22072688

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page