UZH-Logo

Maintenance Infos

Diversity and community composition of euglossine bee assemblages (Hymenoptera: Apidae) in western Amazonia


Abrahamczyk, S; Gottleuber, P; Matauschek, C; Kessler, M (2011). Diversity and community composition of euglossine bee assemblages (Hymenoptera: Apidae) in western Amazonia. Biodiversity and Conservation, 20(13):2981-3001.

Abstract

Tropical forests are known for their diverse insect fauna. We aimed to determine the effect and relative importance of latitude, elevation and climatic factors affecting species richness and turnover in euglossine bee assemblages along a gradient of 18° latitude from tropical rainforests to subtropical, deciduous dry forests in Peru and Bolivia. Sixteen forest sites were sampled during the dry season. Variance partitioning techniques were applied to assess the relative effects of the spatial and environmental variables on species richness and composition. Furthermore, we conducted a Species Indicator Analysis to find characteristic species for the biogeographic zones. There was a significant decrease in species richness towards the subtropical area. The best predictors of species richness were precipitation and its consequences on soil properties as well as temperature seasonality. The abundance of euglossines was most closely related to precipitation and soil-pH, but the causal links of abundance to these factors is unclear since soil-pH itself is correlated to a drastic turnover of vegetation structure. Based on the analysis of assemblage composition we propose three different assemblages with a transitional zone at the southern tropical area. The biogeographical distribution of euglossine bees along our study transect appears to be primarily related to climatic conditions and does not reflect the common subdividion of Amazonia into drainage systems.

Tropical forests are known for their diverse insect fauna. We aimed to determine the effect and relative importance of latitude, elevation and climatic factors affecting species richness and turnover in euglossine bee assemblages along a gradient of 18° latitude from tropical rainforests to subtropical, deciduous dry forests in Peru and Bolivia. Sixteen forest sites were sampled during the dry season. Variance partitioning techniques were applied to assess the relative effects of the spatial and environmental variables on species richness and composition. Furthermore, we conducted a Species Indicator Analysis to find characteristic species for the biogeographic zones. There was a significant decrease in species richness towards the subtropical area. The best predictors of species richness were precipitation and its consequences on soil properties as well as temperature seasonality. The abundance of euglossines was most closely related to precipitation and soil-pH, but the causal links of abundance to these factors is unclear since soil-pH itself is correlated to a drastic turnover of vegetation structure. Based on the analysis of assemblage composition we propose three different assemblages with a transitional zone at the southern tropical area. The biogeographical distribution of euglossine bees along our study transect appears to be primarily related to climatic conditions and does not reflect the common subdividion of Amazonia into drainage systems.

Citations

20 citations in Web of Science®
20 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 01 Dec 2011
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Systematic Botany and Botanical Gardens
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:2011
Deposited On:01 Dec 2011 12:08
Last Modified:05 Apr 2016 15:07
Publisher:Springer
ISSN:0960-3115
Publisher DOI:https://doi.org/10.1007/s10531-011-0105-1
Permanent URL: https://doi.org/10.5167/uzh-51433

Download

[img]
Filetype: PDF - Registered users only
Size: 314kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations