Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-51647

Hahn, K R; Tricoli, A; Santarossa, G; Vargas, A; Baiker, A (2011). Theoretical study of the (110) surface of Sn(1) (-) (x)Ti(x)O(2) solid solutions with different distribution and content of Ti. Surface Science, 605(15-16):1476-1482.

[img]Published Version
PDF - Registered users only
View at publisher


The composition and thermodynamic stability of the (110) surface of Sn(1) (-) (x)Ti(x)O(2) rutile solid solutions was investigated as a function of Ti-distribution and content up to the formation of a full TiO(2) surface monolayer. The bulk and (110) surface properties of Sn(1) (-) (x)Ti(x)O(2) were compared to that of the pure SnO(2) and TiO(2) crystal. A large supercell of 720 atoms and a localized basis set based on the Gaussian and plane wave scheme allowed the investigation of very low Ti-content and symmetry. For the bulk, optimization of the crystal structure confirmed that up to a Ti-content of 3.3 at.%, the lattice parameters (a, c) of SnO(2) do not change. Increasing further the Ti-content decreased both lattice parameters down to those of TiO(2). The surface energy of these solid solutions did not change for Ti-substitution in the bulk of up to 20 at.%. In contrast, substitution in the surface layer rapidly decreased the surface energy from 0.99 to 0.74 J/m(2) with increasing Ti-content from 0 to 20 at.%. As a result, systems with Ti atoms distributed in the surface (surface enrichment) had always lower energies and thus were thermodynamically more favorable than those with Ti homogeneously distributed in the bulk. This was attributed to the lower energy necessary to break the Ti - O bonds than Sn - O bonds in the surface layer. In fact, distributing the Ti atoms homogeneously or segregated in the (110) surface led to the same surface energy indicating that restructuring of the surface bond lengths has minimal impact on thermodynamic stability of these rutile systems. As a result, a first theoretical prediction of the composition of Sn(1) (-) (x)Ti(x)O(2) solid solutions is proposed. (C) 2011 Elsevier B.V. All rights reserved.


11 citations in Web of Science®
2 citations in Scopus®
Google Scholar™



0 downloads since deposited on 03 Jan 2012
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Date:August 2011
Deposited On:03 Jan 2012 15:03
Last Modified:05 Apr 2016 15:08
Publisher DOI:10.1016/j.susc.2011.05.016
Other Identification Number:ISI:000293671000024

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page