UZH-Logo

Maintenance Infos

Fatigue-induced increase in intracortical communication between mid/anterior insular and motor cortex during cycling exercise.


Hilty, L; Langer, N; Pascual-Marqui, R; Boutellier, U; Lutz, K (2011). Fatigue-induced increase in intracortical communication between mid/anterior insular and motor cortex during cycling exercise. European Journal of Neuroscience, 34(12):2035-2042.

Abstract

In the present study, intracortical communication between mid/anterior insular and motor cortex was investigated during a fatiguing cycling exercise. From 16 healthy male subjects performing a constant-load test at 60% peak oxygen consumption (VO(2peak) ) until volitional exhaustion, electroencephalography data were analysed during repetitive, artefact-free periods of 1-min duration. To quantify fatigue-induced intracortical communication, mean intra-hemispheric lagged phase synchronization between mid/anterior insular and motor cortex was calculated: (i) at the beginning of cycling; (ii) at the end of cycling; and (iii) during recovery cycling. Results revealed significantly increased lagged phase synchronization at the end of cycling, which returned to baseline during recovery cycling after subjects' cessation of exercise. Following previous imaging studies reporting the mid/anterior insular cortex as an essential instance processing a variety of sensory stimuli and signalling forthcoming physiological threat, our results provide further evidence that during a fatiguing exercise this structure might not only integrate and evaluate sensory information from the periphery, but also act in communication with the motor cortex. To the best of our knowledge, this is the first study to empirically demonstrate that muscle fatigue leads to changes in interaction between structures of a brain's neural network.

In the present study, intracortical communication between mid/anterior insular and motor cortex was investigated during a fatiguing cycling exercise. From 16 healthy male subjects performing a constant-load test at 60% peak oxygen consumption (VO(2peak) ) until volitional exhaustion, electroencephalography data were analysed during repetitive, artefact-free periods of 1-min duration. To quantify fatigue-induced intracortical communication, mean intra-hemispheric lagged phase synchronization between mid/anterior insular and motor cortex was calculated: (i) at the beginning of cycling; (ii) at the end of cycling; and (iii) during recovery cycling. Results revealed significantly increased lagged phase synchronization at the end of cycling, which returned to baseline during recovery cycling after subjects' cessation of exercise. Following previous imaging studies reporting the mid/anterior insular cortex as an essential instance processing a variety of sensory stimuli and signalling forthcoming physiological threat, our results provide further evidence that during a fatiguing exercise this structure might not only integrate and evaluate sensory information from the periphery, but also act in communication with the motor cortex. To the best of our knowledge, this is the first study to empirically demonstrate that muscle fatigue leads to changes in interaction between structures of a brain's neural network.

Citations

25 citations in Web of Science®
32 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology

04 Faculty of Medicine > The KEY Institute for Brain-Mind Research
06 Faculty of Arts > Institute of Psychology
Dewey Decimal Classification:570 Life sciences; biology
150 Psychology
610 Medicine & health
Uncontrolled Keywords: EEG, exercise, homeostatic functions, lagged phase synchronization, supraspinal fatigue
Language:English
Date:2011
Deposited On:28 Nov 2011 15:06
Last Modified:05 Apr 2016 15:08
Publisher:Wiley-Blackwell
ISSN:0953-816X
Publisher DOI:https://doi.org/10.1111/j.1460-9568.2011.07909.x
PubMed ID:22097899

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations