UZH-Logo

Maintenance Infos

Scale-dependent measurement and analysis of ground surface temperature variability in alpine terrain


Gubler, S; Fiddes, J; Keller, M; Gruber, S (2011). Scale-dependent measurement and analysis of ground surface temperature variability in alpine terrain. Cryosphere, 5(2):431-443.

Abstract

Measurements of environmental variables are often used to validate and calibrate physically-based models. Depending on their application, the models are used at different scales, ranging from few meters to tens of kilometers. Environmental variables can vary strongly within the grid cells of these models. Validating a model with a single measurement is therefore delicate and susceptible to induce bias in further model applications.
To address the question of uncertainty associated with scale in permafrost models, we present data of 390 spatially-distributed ground surface temperature measurements recorded in terrain of high topographic variability in the Swiss Alps. We illustrate a way to program, deploy and refind a large number of measurement devices efficiently, and present a strategy to reduce data loss reported in earlier studies. Data after the first year of deployment is presented.
The measurements represent the variability of ground surface temperatures at two different scales ranging from few meters to some kilometers. On the coarser scale, the depen- dence of mean annual ground surface temperature on elevation, slope, aspect and ground cover type is modelled with a multiple linear regression model. Sampled mean annual ground surface temperatures vary from −4 ◦C to 5 ◦C within an area of approximately 16 km2 subject to elevational differences of approximately 1000 m. The measurements also indicate that mean annual ground surface temperatures vary up to 6 ◦C (i.e., from −2 ◦C to 4 ◦C) even within an elevational band of 300 m. Furthermore, fine-scale variations can be high (up to 2.5◦C) at distances of less than 14m in homogeneous terrain. The effect of this high variability of an environmental variable on model validation and applications in alpine regions is discussed.

Measurements of environmental variables are often used to validate and calibrate physically-based models. Depending on their application, the models are used at different scales, ranging from few meters to tens of kilometers. Environmental variables can vary strongly within the grid cells of these models. Validating a model with a single measurement is therefore delicate and susceptible to induce bias in further model applications.
To address the question of uncertainty associated with scale in permafrost models, we present data of 390 spatially-distributed ground surface temperature measurements recorded in terrain of high topographic variability in the Swiss Alps. We illustrate a way to program, deploy and refind a large number of measurement devices efficiently, and present a strategy to reduce data loss reported in earlier studies. Data after the first year of deployment is presented.
The measurements represent the variability of ground surface temperatures at two different scales ranging from few meters to some kilometers. On the coarser scale, the depen- dence of mean annual ground surface temperature on elevation, slope, aspect and ground cover type is modelled with a multiple linear regression model. Sampled mean annual ground surface temperatures vary from −4 ◦C to 5 ◦C within an area of approximately 16 km2 subject to elevational differences of approximately 1000 m. The measurements also indicate that mean annual ground surface temperatures vary up to 6 ◦C (i.e., from −2 ◦C to 4 ◦C) even within an elevational band of 300 m. Furthermore, fine-scale variations can be high (up to 2.5◦C) at distances of less than 14m in homogeneous terrain. The effect of this high variability of an environmental variable on model validation and applications in alpine regions is discussed.

Citations

35 citations in Web of Science®
41 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

120 downloads since deposited on 06 Dec 2011
27 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, not refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2011
Deposited On:06 Dec 2011 14:18
Last Modified:05 Apr 2016 15:08
Publisher:Copernicus
ISSN:1994-0416
Publisher DOI:10.5194/tc-5-431-2011
Permanent URL: http://doi.org/10.5167/uzh-51685

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 3MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations