UZH-Logo

Identification and functional characterization of a novel rhodopsin mutation associated with autosomal dominant CSNB


Zeitz, C; Gross, A K; Leifert, D; Kloeckener-Gruissem, B; McAlear, S D; Lemke, J; Neidhardt, G; Berger, W (2008). Identification and functional characterization of a novel rhodopsin mutation associated with autosomal dominant CSNB. Investigative Ophthalmology and Visual Science, 49(9):4105-4114.

Abstract

PURPOSE: Mutations in RHO, PDE6B, and GNAT1 can lead to autosomal dominant congenital stationary night blindness (adCSNB). The study was conducted to identify the genetic defect in a large Swiss family affected with adCSNB and to investigate the pathogenic mechanism of the mutation. METHODS: Two affected cousins of a large Swiss family were examined clinically by standard methods: funduscopy, EOG, ERG, and dark adaptometry. Twelve family members were screened for mutations in RHO. The ability of mutant rhodopsin to activate transducin constitutively was monitored by measuring the catalytic exchange of bound GDP for radiolabeled [(35)S]GTPgammaS in transducin. RESULTS: A novel mutation was identified in RHO (c.884C>T, p.Ala295Val) in patients with adCSNB. They had full vision under photopic conditions, showed no fundus abnormalities, revealed EOG results in the normal range, but presented night blindness with an altered scotopic ERG. In the presence of 11-cis retinal, the mutant rhodopsin is inactive, similar to wild-type, responding only when exposed to light. However, in the absence of 11-cis-retinal, unlike wild-type opsin, the mutant opsin constitutively activates transducin. CONCLUSIONS: The study adds a fourth rhodopsin mutation associated with CSNB. Although the phenotype of autosomal dominant CSNB may vary slightly in patients showing mutations in RHO, PDE6B, or GNAT1, the disease course seems to be stationary with only scotopic vision being affected. The data indicate that the mutant opsin activates transducin constitutively, which is a consistent and common feature of all four CSNB-associated rhodopsin mutations reported to date.

PURPOSE: Mutations in RHO, PDE6B, and GNAT1 can lead to autosomal dominant congenital stationary night blindness (adCSNB). The study was conducted to identify the genetic defect in a large Swiss family affected with adCSNB and to investigate the pathogenic mechanism of the mutation. METHODS: Two affected cousins of a large Swiss family were examined clinically by standard methods: funduscopy, EOG, ERG, and dark adaptometry. Twelve family members were screened for mutations in RHO. The ability of mutant rhodopsin to activate transducin constitutively was monitored by measuring the catalytic exchange of bound GDP for radiolabeled [(35)S]GTPgammaS in transducin. RESULTS: A novel mutation was identified in RHO (c.884C>T, p.Ala295Val) in patients with adCSNB. They had full vision under photopic conditions, showed no fundus abnormalities, revealed EOG results in the normal range, but presented night blindness with an altered scotopic ERG. In the presence of 11-cis retinal, the mutant rhodopsin is inactive, similar to wild-type, responding only when exposed to light. However, in the absence of 11-cis-retinal, unlike wild-type opsin, the mutant opsin constitutively activates transducin. CONCLUSIONS: The study adds a fourth rhodopsin mutation associated with CSNB. Although the phenotype of autosomal dominant CSNB may vary slightly in patients showing mutations in RHO, PDE6B, or GNAT1, the disease course seems to be stationary with only scotopic vision being affected. The data indicate that the mutant opsin activates transducin constitutively, which is a consistent and common feature of all four CSNB-associated rhodopsin mutations reported to date.

Citations

21 citations in Web of Science®
25 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 14 Jan 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Medical Genetics
04 Faculty of Medicine > Institute of Medical Molecular Genetics
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2008
Deposited On:14 Jan 2009 17:05
Last Modified:05 Apr 2016 12:33
Publisher:Association for Research in Vision and Ophthalmology
ISSN:0146-0404
Publisher DOI:10.1167/iovs.08-1717
PubMed ID:18487375
Permanent URL: http://doi.org/10.5167/uzh-5224

Download

[img]
Filetype: PDF - Registered users only
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations