UZH-Logo

Maintenance Infos

Application of a combination of dating techniques to reconstruct the Lateglacial and early Holocene landscape history of the Albula region (eastern Switzerland)


Böhlert, R; Egli, M; Maisch, M; Brandova, D; Ivy-Ochs, S; Kubik, P W; Haeberli, W (2011). Application of a combination of dating techniques to reconstruct the Lateglacial and early Holocene landscape history of the Albula region (eastern Switzerland). Geomorphology, 127(1-2):1-13.

Abstract

Landforms in Val Mulix and the Albula region in eastern Switzerland offer a detailed insight into the period between the Oldest Dryas until the early Holocene. To better understand Lateglacial and Holocene climate change in the central Alps, glacial (moraines, polished bedrock) and periglacial (rock glacier) landforms were dated using a combined approach of numerical (cosmogenic 10Be) and relative (Schmidt-hammer, weathering rind thickness) dating techniques.
At high-elevation sites near the Last Glacial Maximum (LGM) trimline, 10Be exposure ages of glacially modified bedrock are between 11.2 ka and 13.5 ka. This suggests the persistence of long-lasting small local ice caps after the breakdown of the LGM ice domes or, alternatively, a reformation of ice perhaps during the Younger Dryas.
In Val Mulix we obtained one of the first ages for the Daun-stadial (> 14.7 ka) moraines (14.9 ± 1.8 ka), supporting a pre-Bølling chronological position. The age is in excellent agreement with the age of a boulder from an Egesen I moraine located up-valley which we postulate may be a Daun moraine that was re-occupied during the Egesen stadial. A boulder from an Egesen II moraine gave an age of 10.7 ka, which is similar to ages of Egesen II moraines at other sites in the Alps. 10Be ages from boulders found on a relict rock glacier in Val Mulix indicate that the main active phase lasted from the Lateglacial until the early Holocene. The derived mean annual flow rate is of the order of decimetres, which is in accordance with values stated in the literature based on measuring active rock glaciers in the Alps. Exposure ages from a glacially polished rock barrier showed that this area was ice-free at the end of the Younger Dryas (9.0 ± 0.7 ka and 11.9 ± 0.9 ka). The polished bedrocks are located a few hundred meters down-valley from the Little Ice Age (LIA) moraines. This gives direct evidence of a fast ice retreat towards the end of the Younger Dryas, with glacier length variations that did not exceed the 1850 AD extension (Little Ice Age maximum). Surface exposure dating is, however, limited by several methodological constraints. The choice of suitable snow depths plays a crucial role in the calculation of the 10Be ages. Shielding of surfaces from cosmic rays by snow can significantly influence the exposure age, and variations in the estimated annual snowfall in the Albula region since the LGM is therefore a potential source of considerable uncertainty in our measurements. While the measurement of weathering rind thicknesses turned out to be an appropriate tool to support the reconstruction of Lateglacial landscape evolution, Schmidt-hammer R-values were less helpful. The R-values enabled a temporal distinction of landforms within the Holocene (LIA moraine, active rock glaciers) but not within the Lateglacial. From a methodological point of view, the different dating methods enabled a cross-checking, an extended interpretation of the data and a more accurate estimate of the possible sources of error.

Landforms in Val Mulix and the Albula region in eastern Switzerland offer a detailed insight into the period between the Oldest Dryas until the early Holocene. To better understand Lateglacial and Holocene climate change in the central Alps, glacial (moraines, polished bedrock) and periglacial (rock glacier) landforms were dated using a combined approach of numerical (cosmogenic 10Be) and relative (Schmidt-hammer, weathering rind thickness) dating techniques.
At high-elevation sites near the Last Glacial Maximum (LGM) trimline, 10Be exposure ages of glacially modified bedrock are between 11.2 ka and 13.5 ka. This suggests the persistence of long-lasting small local ice caps after the breakdown of the LGM ice domes or, alternatively, a reformation of ice perhaps during the Younger Dryas.
In Val Mulix we obtained one of the first ages for the Daun-stadial (> 14.7 ka) moraines (14.9 ± 1.8 ka), supporting a pre-Bølling chronological position. The age is in excellent agreement with the age of a boulder from an Egesen I moraine located up-valley which we postulate may be a Daun moraine that was re-occupied during the Egesen stadial. A boulder from an Egesen II moraine gave an age of 10.7 ka, which is similar to ages of Egesen II moraines at other sites in the Alps. 10Be ages from boulders found on a relict rock glacier in Val Mulix indicate that the main active phase lasted from the Lateglacial until the early Holocene. The derived mean annual flow rate is of the order of decimetres, which is in accordance with values stated in the literature based on measuring active rock glaciers in the Alps. Exposure ages from a glacially polished rock barrier showed that this area was ice-free at the end of the Younger Dryas (9.0 ± 0.7 ka and 11.9 ± 0.9 ka). The polished bedrocks are located a few hundred meters down-valley from the Little Ice Age (LIA) moraines. This gives direct evidence of a fast ice retreat towards the end of the Younger Dryas, with glacier length variations that did not exceed the 1850 AD extension (Little Ice Age maximum). Surface exposure dating is, however, limited by several methodological constraints. The choice of suitable snow depths plays a crucial role in the calculation of the 10Be ages. Shielding of surfaces from cosmic rays by snow can significantly influence the exposure age, and variations in the estimated annual snowfall in the Albula region since the LGM is therefore a potential source of considerable uncertainty in our measurements. While the measurement of weathering rind thicknesses turned out to be an appropriate tool to support the reconstruction of Lateglacial landscape evolution, Schmidt-hammer R-values were less helpful. The R-values enabled a temporal distinction of landforms within the Holocene (LIA moraine, active rock glaciers) but not within the Lateglacial. From a methodological point of view, the different dating methods enabled a cross-checking, an extended interpretation of the data and a more accurate estimate of the possible sources of error.

Citations

19 citations in Web of Science®
19 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

137 downloads since deposited on 06 Dec 2011
21 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2011
Deposited On:06 Dec 2011 13:59
Last Modified:05 Apr 2016 15:13
Publisher:Elsevier
ISSN:0169-555X
Publisher DOI:https://doi.org/10.1016/j.geomorph.2010.10.034
Permanent URL: https://doi.org/10.5167/uzh-52577

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations