UZH-Logo

Maintenance Infos

Down-regulation of organic anion transporter expression in human hepatocytes exposed to the proinflammatory cytokine interleukin 1beta


Le Vee, M; Gripon, P; Stieger, B; Fardel, O (2008). Down-regulation of organic anion transporter expression in human hepatocytes exposed to the proinflammatory cytokine interleukin 1beta. Drug Metabolism and Disposition, 36(2):217-222.

Abstract

Interleukin (IL) 1beta is a proinflammatory cytokine known to markedly alter expression of major organic anion transporters in rodent hepatocytes. However, its effects toward human hepatic transporters remain poorly characterized. Therefore, the present study was aimed at determining IL-1beta effects on expression of organic anion transporters in primary human hepatocytes and highly differentiated human hepatoma HepaRG cells. Exposure to 1 ng/ml IL-1beta was first shown to markedly repress mRNA expression of sodium-taurocholate cotransporting polypeptide (NTCP), a major sinusoidal transporter handling bile acids, in both human hepatocytes and HepaRG cells. It concomitantly reduced NTCP protein levels and NTCP-mediated cellular uptake of taurocholate in HepaRG cells. Other transporters such as the influx transporters organic anion transporting polypeptide (OATP)-B, OATP-C, and OATP8 and the efflux pumps multidrug resistance-associated protein (MRP) 2, MRP3, MRP4, and breast cancer resistance protein were also down-regulated at mRNA levels in human hepatocytes treated by IL-1beta for 24 h, and most of these transporters were similarly repressed in IL-1beta-exposed HepaRG cells; the cytokine also reduced bile salt export pump (BSEP) and OATP-C protein expression in human hepatocytes. IL-1beta was further shown to activate the extracellular signal-regulated protein kinase (ERK) in human hepatocytes and HepaRG cells; however, chemical inhibition of this kinase failed to counteract repressing effects of IL-1beta toward NTCP, BSEP, OATP-B, and OATP-C. Taken together, these data indicate that IL-1beta treatment reduced expression of major organic anion transporters in human hepatic cells in an ERK-independent manner. Such IL-1beta effects may likely participate in both cholestasis and alterations of hepatic detoxification pathways caused by inflammation in humans.

Abstract

Interleukin (IL) 1beta is a proinflammatory cytokine known to markedly alter expression of major organic anion transporters in rodent hepatocytes. However, its effects toward human hepatic transporters remain poorly characterized. Therefore, the present study was aimed at determining IL-1beta effects on expression of organic anion transporters in primary human hepatocytes and highly differentiated human hepatoma HepaRG cells. Exposure to 1 ng/ml IL-1beta was first shown to markedly repress mRNA expression of sodium-taurocholate cotransporting polypeptide (NTCP), a major sinusoidal transporter handling bile acids, in both human hepatocytes and HepaRG cells. It concomitantly reduced NTCP protein levels and NTCP-mediated cellular uptake of taurocholate in HepaRG cells. Other transporters such as the influx transporters organic anion transporting polypeptide (OATP)-B, OATP-C, and OATP8 and the efflux pumps multidrug resistance-associated protein (MRP) 2, MRP3, MRP4, and breast cancer resistance protein were also down-regulated at mRNA levels in human hepatocytes treated by IL-1beta for 24 h, and most of these transporters were similarly repressed in IL-1beta-exposed HepaRG cells; the cytokine also reduced bile salt export pump (BSEP) and OATP-C protein expression in human hepatocytes. IL-1beta was further shown to activate the extracellular signal-regulated protein kinase (ERK) in human hepatocytes and HepaRG cells; however, chemical inhibition of this kinase failed to counteract repressing effects of IL-1beta toward NTCP, BSEP, OATP-B, and OATP-C. Taken together, these data indicate that IL-1beta treatment reduced expression of major organic anion transporters in human hepatic cells in an ERK-independent manner. Such IL-1beta effects may likely participate in both cholestasis and alterations of hepatic detoxification pathways caused by inflammation in humans.

Citations

57 citations in Web of Science®
65 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 28 Nov 2008
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Clinical Pharmacology and Toxicology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:February 2008
Deposited On:28 Nov 2008 09:51
Last Modified:05 Apr 2016 12:33
Publisher:American Society for Pharmacology and Experimental Therapeutics
ISSN:0090-9556
Publisher DOI:https://doi.org/10.1124/dmd.107.016907
PubMed ID:17991769

Download

[img]
Content: Accepted Version
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations