Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-52736

Wirz, V; Schirmer, M; Gruber, S; Lehning, M (2011). Spatio-temporal measurements and analysis of snow depth in a rock face. The Crysophere, 5(4):893-905.

[img]
Preview
Published Version
PDF
1654Kb

Abstract

Snow in rock faces plays a key role in the alpine environment for permafrost distribution, snow water storage or runoff in spring. However, a detailed assessment of snow depths in steep rock walls has never been attempted. To understand snow distribution in rock faces a high-resolution terrestrial laser scanner (TLS), including a digital camera, was used to obtain interpolated snow depth (HS) data with a grid resolution of one metre. The mean HS, the snow covered area and their evolution in the rock face were compared to a neighbouring smoother catchment and a flat field station at similar elevation. Further we analyzed the patterns of HS distribution in the rock face after different weather periods and investigated the main factors contributing to those distributions.
In a first step we could show that with TLS reliable information on surface data of a steep rocky surface can be obtained. In comparison to the flatter sites in the vicinity, mean HS in the rock face was lower during the entire winter, but trends of snow depth changes were similar. We observed repeating accumulation and ablation patterns in the rock face, while maximum snow depth loss always occurred at those places with maximum snow depth gain. Further analysis of the main factors contributing to the snow depth distribution in the rock face revealed terrain-wind-interaction processes to be dominant. Processes related to slope angle seem to play a role, but no simple relationship between slope angle and snow depth was found.
Further analyses should involve measurements in rock faces with other characteristics and higher temporal resolutions to be able to distinguish individual processes better. Additionally, the relation of spatial and temporal distribution of snow depth to terrain – wind interactions should be tested.

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
DDC:910 Geography & travel
Language:English
Date:2011
Deposited On:22 Dec 2011 17:08
Last Modified:28 Nov 2013 00:35
Publisher:Copernicus
ISSN:1994-0416
Publisher DOI:10.5194/tc-5-893-2011
Citations:Web of Science®. Times Cited: 6
Google Scholar™

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page